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a b s t r a c t 

Autonomous vehicles are soon to become ubiquitous in large urban areas, encompassing cities, suburbs 

and vast highway networks. In turn, this will bring new challenges to the existing traffic management ex- 

pert systems. Concurrently, urban development is causing growth, thus changing the network structures. 

As such, a new generation of adaptive algorithms are needed, ones that learn in real-time, capture the 

multivariate nonlinear spatio-temporal dependencies and are easily adaptable to new data (e.g. weather 

or crowdsourced data) and changes in network structure, without having to retrain and/or redeploy the 

entire system. 

We propose learning Topology-Regularized Universal Vector Autoregression (TRU-VAR) and examplify de- 

ployment with of state-of-the-art function approximators. Our expert system produces reliable forecasts 

in large urban areas and is best described as scalable, versatile and accurate. By introducing constraints 

via a topology-designed adjacency matrix (TDAM), we simultaneously reduce computational complexity 

while improving accuracy by capturing the non-linear spatio-temporal dependencies between timeseries. 

The strength of our method also resides in its redundancy through modularity and adaptability via the 

TDAM, which can be altered even while the system is deployed. The large-scale network-wide empirical 

evaluations on two qualitatively and quantitatively different datasets show that our method scales well 

and can be trained efficiently with low generalization error. 

We also provide a broad review of the literature and illustrate the complex dependencies at intersections 

and discuss the issues of data broadcasted by road network sensors. The lowest prediction error was 

observed for TRU-VAR, which outperforms ARIMA in all cases and the equivalent univariate predictors 

in almost all cases for both datasets. We conclude that forecasting accuracy is heavily influenced by the 

TDAM, which should be tailored specifically for each dataset and network type. Further improvements 

are possible based on including additional data in the model, such as readings from different metrics. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Expert systems are at the forefront of intelligent computing and 

‘soft Artificial Intelligence (soft AI)’. Typically, they are seamlessly 

integrated in complete business solutions, making them part of the 

core value. In the current work we propose a system for large- 

area traffic forecasting, in the context of the challenges imposed by 

rapidly growing urban mobility networks, which we outline in the 

following paragraphs. Our solution relies on the formulation of a 
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powerful inference system which is combined with expert domain 

knowledge of the network topology, and that can be seamlessly in- 

tegrated with a control schema. 

Fully autonomous traffic implies an omniscient AI which is com- 

prised of two expert systems, since it has to be able to both per- 

ceive and efficiently control traffic in real time. This implies the 

observation of both the network state and the entities on the net- 

work. Therefore, sensing (perception) can be done via (i) passive 

sensors (e.g. induction loops, traffic cameras, radar) or (ii) mobile 

ones (e.g. Global Positioning Systems (GPS), Bluetooth, Radio Fre- 

quency Identification (RFID)). While the crowdsourced data from 

moving sensors (ii) can provide high-granularity data to fill ac- 

curate Origin-Destination (O-D) matrices, their penetration rate is 

still scarce to scale up ( Moreira-Matias, Gama, Ferreira, Mendes- 

Moreira, & Damas, 2016 ). 
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Forecasting traffic is a function of control as well, since chang- 

ing traffic rules or providing route recommendations can have an 

impact on the network load. However, there are factors that are 

not a function of control, such as human error or extreme weather 

conditions, which are the actual unforeseen causes of congestion. 

Therefore, during the transition to fully autonomous traffic con- 

trol, there will be an even greater need for accurate predictions. 

There are also many possible intelligent applications such as a per- 

sonalized copilots making real time route suggestions based on 

users preferences and traffic conditions, economical parking meter- 

ing, agile car pooling services, all of these paving the way towards 

fully autonomous self driving cars. Not surprisingly, the work in 

simulation by Au, Zhang, and Stone (2015) has shown that semi- 

autonomous intersection management can greatly decrease traffic 

delay in mixed traffic conditions (no autonomy, regular or adaptive 

cruise control, or full autonomy). This is possible by linking cars in 

a semi-autonomous way, thus solving the congestion ‘wave’ prob- 

lem, if most of the vehicles are semi-autonomous. 

Traffic prediction will therefore become paramount as urban 

population is growing and autonomous vehicles will become ubiq- 

uitous for both personal and public transport as well as for in- 

dustrial automation. Currently, one may argue that automatic traf- 

fic might be a self-defeating process. A common scenario might 

be in the case when the recommendations from a prediction ex- 

pert system are identical for all users in the network. In this case, 

new congestions can and will be created (most vehicles take the 

same route), which in turn invalidate the forecasts. This is evi- 

dently caused by poor control policies or a lack of adequate in- 

frastructure. Fortunately, simple solutions for both of these issues 

exist, here we refer the reader to two references for each poten- 

tial issue. Çolak, Lima, and González (2016) formulate the control 

problem as a collective travel time savings optimization problem, 

under a centralized routing scheme. Different quantified levels of 

social good (vs. greedy individual) are tweaked in order to achieve 

significant collective benefits. A simple (but more socially challeng- 

ing) way to overcome the infrastructure problem is recommenda- 

tions for car pooling as suggested by Guidotti, Nanni, Rinzivillo, Pe- 

dreschi, and Giannotti (2016) . 

Concerning the traffic prediction literature, most research ef- 

fort is focused on motorways and freeways ( Ahn, Ko, & Kim, 2015; 

Asif et al., 2014; Hong et al., 2015; Ko, Ahn, & Kim, 2016; Lippi, 

Bertini, & Frasconi, 2013; Lv, Tang, & Zhao, 2009; Stathopoulos & 

Karlaftis, 2003; Su, Dong, Jia, Qin, & Tian, 2016; Wang, Papageor- 

giou, & Messmer, 2008; Wu, Ho, & Lee, 2004; Zheng, Lee, & Shi, 

2006 ), while other methods are only evaluated on certain week- 

days and / or at particular times of the day ( Su et al., 2016; Wu, 

Chen, Lu, & Yang, 2016 ). These methods usually deploy univari- 

ate statistical models that do not take into consideration all the 

properties that can lead to satisfactory generalization accuracy in 

the context of growth and automation in urban areas, namely: (1) 

real-time (online) learning; (2) model nonlinearity in the spatio- 

temporal domain; (3) low computation complexity and scalability 

to large networks; (4) contextual spatio-temporal multivariable re- 

gression via topological constraints; (5) versatility towards a broad 

set of infrastructure types (urban, suburban, freeways); (6) adap- 

tation to changes in network structure, without full-network rede- 

ployment; (7) redundancy and customization for each series and 

adjacency matrix; (8) encoding time or using multi-metric data. 

In the current work we address these issues and propose a 

multivariate traffic forecasting method that can capture spatio- 

temporal correlations, is redundant (fault tolerant) through mod- 

ularity, adaptable (trivial to redeploy) to changing topologies of 

the network via its modular topology-designed adjacency matrix 

(TDAM). Our method can be efficiently deployed over large net- 

works of broad road type variety with low prediction error and 

therefore generalizes well across scopes and applications. We also 

show ( Fig. 12 ) that our method can predict within reasonable ac- 

curacy even up to two hours in the future – the error increases lin- 

early and the increase rate depends on the function approximator, 

the TDAM and the quality of the data. We provide a comparison 

with state of the art methods in Table 1 according to properties 

that we believe are essential to the next generation of intelligent 

expert systems for traffic forecasting: 

Our contributions are as follows: (i) We propose learning 

Topology-Regularized Universal Vector Autoregression (TRU-VAR), 

a novel method that can absorb spatio-temporal dependences be- 

tween multiple sensor stations; (ii) The extension of TRU-VAR to 

nonlinear universal function approximators over the existing state 

of the art machine learning algorithms, resulting in an exhaus- 

tive comparison; (iii) Evaluations performed on two large scale 

real world datasets, one of which is novel; (iv) Comprehensive 

coverage of the literature, and an exploratory analysis considering 

data quality, preprocessing and possible heuristics for choosing the 

topology-designed adjacency matrix (TDAM). 

Our conclusions are: TRU-VAR shows promising results, scales 

well and is easily deployable with new sensor installations; careful 

choice of the adjacency matrix is necessary according to the type 

of dataset used; high resolution data (temporal as well as spatial) 

is essential; missing data should be marked in order to distinguish 

it from real congestion events; given that the methods show quite 

different results on the two datasets we argue that a public set of 

large-scale benchmark datasets should be made available for test- 

ing the prediction performance of novel methods. 

2. Related work 

Traffic forecasting methodologies can be challenging to charac- 

terize and compare due to the lack of a common set of bench- 

marks. Despite the numerous methods that have been developed, 

there is yet none that is modular, design-flexible and adaptable 

to growing networks and changing scopes. The scope (e.g. free- 

way, arterial or city) and application can differ across methods. 

Therefore, it is not trivial to assess the overall performance of 

different approaches when the datasets and metrics differ. Often, 

subsets of the network are used for evaluating performance as 

opposed to the general case of network-wide prediction, which 

includes highways as well as suburban and urban regions. Fur- 

thermore, off-peak times and weekends are also sometimes ex- 

cluded. For critical reviews of the literature we point the reader 

to Oh, Byon, Jang, and Yeo (2015) , Vlahogianni, Karlaftis, and Go- 

lias (2014) , Van Lint and Van Hinsbergen (2012) , Vlahogianni, Go- 

lias, and Karlaftis (2004) , Smith, Williams, and Oswald (2002) and 

Smith and Demetsky (1997) . 

Traffic metric types for sensor loops and floating car data: 

When it comes to metrics, speed, density and flow can be used 

as target prediction metrics. Flow (or volume) is the number of 

vehicles passing through a sensor per time unit (usually aggre- 

gated in 1, 5 or 15 min intervals). Density is the number of ve- 

hicles per kilometre. It was shown ( Clark, 2003 ) that multi-metric 

predictors can result in lower prediction error. That is, variety of 

input data metrics is beneficial. As to the metric being predicted, 

some authors argue that flow is more important due to its stabil- 

ity ( Levin & Tsao, 1980 ) while others ( Dougherty & Cobbett, 1997 ) 

have found that traffic conditions are best described using flow 

and density as opposed to speed, as output metric. Nevertheless, 

there is a large amount of work where speed is predicted, as 

opposed to flow or density ( Asif et al., 2014; Dougherty & Cob- 

bett, 1997; Fusco, Colombaroni, Comelli, & Isaenko, 2015; Kamar- 

ianakis, Shen, & Wynter, 2012; Lee, Kim, & Yoon, 2007; Mitrovic, 

Asif, Dauwels, & Jaillet, 2015; Park et al., 2011; Salamanis, Keha- 

gias, Filelis-Papadopoulos, Tzovaras, & Gravvanis, 2016 ). This data 

can come from either loop sensors (two are needed) or floating 
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