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a b s t r a c t 

This paper presents the first population-based path relinking algorithm for solving the NP-hard vertex 

separator problem in graphs. The proposed algorithm employs a dedicated relinking procedure to gener- 

ate intermediate solutions between an initiating solution and a guiding solution taken from a reference 

set of elite solutions (population) and uses a fast tabu search procedure to improve some selected in- 

termediate solutions. Special care is taken to ensure the diversity of the reference set. Dedicated data 

structures based on bucket sorting are employed to ensure a high computational efficiency. The proposed 

algorithm is assessed on four sets of 365 benchmark instances with up to 20,0 0 0 vertices, and shows 

highly comparative results compared to the state-of-the-art methods in the literature. Specifically, we re- 

port improved best solutions (new upper bounds) for 67 instances which can serve as reference values 

for assessment of other algorithms for the problem. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Given an undirected graph G (which may be disconnected) with 

a vertex set V = { v 1 , . . . , v n } where each vertex v i is associated 

with an non-negative weight w i and an unweighted edge set E , the 

vertex separator problem (VSP) is to partition V into three disjoint 

subsets A, B and C , where A and B are non-empty, such that the to- 

tal weight of vertices in C is minimized subject to two constraints: 

(i) there is no edge between A and B and (ii) the cardinality of A 

and B does not exceed a given positive integer b . Set C is called the 

separator of G while A and B are called the shores of the separator. 

Formally, VSP is formulated as follows. 

min 

∑ 

i ∈ C 
w i (1) 

subject to C = V \ (A ∪ B ) , (A × B ) ∩ E = ∅ , A ∩ B = ∅ (2) 

max {| A | , | B |} ≤ b (3) 

A � = ∅ , B � = ∅ , A, B, C ⊂ V (4) 
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where constraint (2) ensures that no edge exists for any pair of 

vertices between shores A and B and constraint (3) requires both A 

and B contain no more than b vertices. A separator C is considered 

as balanced if max{| A |, | B |} ≤ 2| V |/3. 

One of the main and first applications of the VSP concerns 

sparse matrix re-orderings ( George & Liu, 1981 ). Other applications 

include, for instance, detection of brittle nodes in telecommuni- 

cation networks ( Biha & Meurs, 2011 ), identification of the min- 

imal separator in the divide-and-conquer based graph algorithms 

( Evrendilek, 2008; Lipton & Tarjan, 1979 ) as well as finding protein 

conformation in bioinformatics ( Fu & Chen, 2006 ). From the point 

view of computational complexity, the VSP is known to be NP-hard 

for general graphs ( Bui & Jones, 1992 ) and even for planar graphs 

( Fukuyama, 2006 ). 

As general solution methods, Leighton (1983) presented an 

approximation algorithm based on a linear relaxation technique 

and achieved an approximation ratio of O ( log n ). Feige, Hajiaghayi, 

and Lee (2008) improved this result to O ( 
√ 

log n ) by utilizing a 

semidefinite relaxation method. 

There are several exact algorithms, which are able to solve 

instances with up to a few hundred of vertices. In 2005, 

de Souza and Balas (2005) designed a branch-and-cut algorithm 

which explores valid polyhedral inequalities obtained in Balas and 

de Souza (2005) and conducted extensive computational experi- 

ments. In 2011, de Souza and Cavalcante (2011) proposed a hy- 

brid algorithm that combines Lagrangian relaxation with cutting 

plane techniques. Computational results showed that the hybrid al- 
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gorithm outperforms the best exact algorithm available. In 2011, 

Biha and Meurs (2011) presented an exact approach based on a 

new class of valid inequalities and performed comparisons with 

the algorithm in de Souza and Balas (2005) . 

In addition to the above approximation and exact approaches, 

heuristic and metaheuristic algorithms have been devised to ob- 

tain good quality solutions for large VSP instances in reasonable 

computing times. We summarize the state-of-the-art heuristic al- 

gorithms in the literature as follows. 

In 2013, Benlic and Hao (2013) presented the breakout local 

search (BLS) algorithm which combines a local search procedure 

with an adaptive perturbation procedure. The local search proce- 

dure uses a dedicated move operator to transform the current so- 

lution to a neighbor solution. This is achieved by displacing a ver- 

tex v from the separator C to the shore subset A or B , followed by 

displacing all the adjacent vertices of v from the opposite shore 

subset to the separator C . The perturbation procedure employs an 

adaptive mechanism to apply either a directed perturbation or a 

random perturbation to escape local optimum traps and direct the 

search toward unexplored areas. Experimental results on bench- 

mark instances with up to 30 0 0 vertices demonstrated the effec- 

tiveness of the BLS method. 

In 2014, Sánchez-Oro, Mladenovi ́c, and Duarte (2014) intro- 

duced several variable neighborhood search (VNS) algorithms, 

which alternate between a local search phase and a shaking phase. 

Two initial solution constructive procedures (random and greedy) 

are used to generate seeding solutions. The local search phase re- 

lies on three types of basic moves and two combined moves to 

attain a local optimum. A variable neighborhood descent proce- 

dure is then used to further improve the encountered solution 

with the two combined neighborhoods. The shaking phase carries 

out random perturbations to produce new starting feasible solu- 

tions. Experiments on benchmark instances with up to 10 0 0 ver- 

tices showed the effectiveness of the VNS algorithms. 

In 2015, Hager and Hungerford (2015) proposed a continuous 

optimization approach. The VSP problem is first formulated as a 

continuous bilinear quadratic program, which is then solved by a 

multilevel algorithm. Following the general multilevel graph ap- 

proach, the proposed algorithm is composed of three phases in- 

cluding 1) a coarsening phase that hierarchically coarsens a graph 

into a sequence of smaller graphs; 2) a refinement phase that finds 

an initial solution to the graph in the coarsest level; and 3) an 

uncoarsening phase that projects the solution of the lower-level 

graph to its upper level graph. Both hill climbing and Fiduccia–

Mattheyses heuristics are used to solve each hierarchy of graphs. 

Experiments showed that this approach outperforms the general 

graph partitioning package METIS in terms of solution quality for 

graphs with 10 0 0 to 50 0 0 vertices, but is outperformed by the BLS 

method ( Benlic & Hao, 2013 ). 

Recently, the population-based path relinking framework 

( Glover, 1998; Glover & Laguna, 1997 ) has attracted much atten- 

tion in combinatorial optimization and intelligent problem solv- 

ing. The approach has shown outstanding performances in solv- 

ing a number of challenging decision and optimization prob- 

lems in various settings, such as unconstrained binary quadratic 

optimization ( Wang, Lü, Glover, & Hao, 2012 ), flow shop se- 

quencing and scheduling ( Costa, Goldbarg, & Goldbarg, 2012; 

Peng, Lü, & Cheng, 2015; Zeng, Basseur, & Hao, 2013 ), clustering 

( Martins de Oliveira, Nogueira Lorena, Chaves, & Mauri, 2014 ), web 

services composition ( Parejo, Segura, Fernandez, & Ruiz-Cortés, 

2014 ), frequency assignment ( Lai & Hao, 2015 ) and quadratic mul- 

tiple knapsack ( Chen, Hao, & Glover, 2016 ). PR has also been 

combined with other metaheuristics such as genetic algorithms 

( Vallada & Ruiz, 2010 ), scatter search ( González, Oddi, Rasconi, & 

Varela, 2015 ) and GRASP ( Mestria, Ochi, & Martins, 2013 ) to solve 

several difficult combinatorial problems. 

In this work, we are interested in advancing the state-of-the- 

art of solving the VSP with heuristics. For this purpose, we pro- 

pose the first population-based path relinking algorithm for the 

VSP (named PR-VSP). We identify the main contributions of this 

work as follows. 

• The proposed PR-VSP algorithm is the first adaptation of the 

general evolutionary path-relinking framework to the NP-hard 

vertex separator problem. To ensure its search efficiency, PR- 

VSP combines a fast solution improvement procedure with a 

dedicated path relinking method. The solution improvement 

procedure relies on two complementary neighborhood search 

operators to visit promising candidate solutions while the re- 

linking method employs a distanced-based strategy to gener- 

ate new solutions. Additionally, special care is taken to ensure 

the diversity of the reference set (or population) of elite so- 

lutions. Dedicated data structures based on bucket sorting are 

employed to ensure a high computational efficiency. 
• The performance of the proposed algorithm is assessed on four 

sets of 365 benchmark instances (with up to 20,0 0 0 vertices) 

commonly used in the literature and compared with state-of- 

the-art VSP algorithms. The computational results show that 

PR-VSP competes very favorably compared to the current best 

performing algorithms in terms of solution quality and com- 

puting efficiency. Specifically, the proposed algorithm finds new 

best solutions (updated upper bounds) for 67 instances and 

matches previous best solutions for all but one instance. The 

new upper bounds are particularly useful for assessment of 

other VSP algorithms. 

The reminder of the paper is organized as follows. 

Section 2 presents the general scheme and each component 

of the proposed PR-VSP. Section 3 is dedicated to experimental 

results and comparisons with state-of-the-art algorithms in the 

literature. Concluding remarks are given in Section 4 . 

2. The proposed path relinking algorithm for VSP 

Path relinking is a population-based general framework which 

was originally proposed for enhancing the tabu search method 

( Glover, 1998; Glover & Laguna, 1997 ). Like other general meta- 

heuristics, when applying such a method to a particular problem, 

it is necessary and indispensable to make a number of specific 

adaptations to the problem under consideration ( Wang & Punnen, 

2017; Wang, Wu, & Glover, 2017 ). In this section, we first expose 

the main scheme of the proposed algorithm and then explain each 

specific component. 

2.1. Main scheme 

Algorithm 1 shows the general scheme of the PR-VSP algo- 

rithm. It first creates a reference set RefSet consisting of a set 

of elite (feasible) solutions { S 1 , S 2 , . . . , S p } and constructs a set 

PairSet composed of indexes of all pairwise solutions in RefSet (See 

Algorithm 2 , Section 2.3 ). Then, for each pair of solutions ( S i and 

S j ), a relinking method is utilized to build a solution path (i.e., 

a sequence of intermediate solutions) that connects the initiating 

solution where the path starts from (say S i ) and the guiding so- 

lution where the path ends (say S j ) (see Section 2.5 ). By inter- 

changing the initiating and guiding solutions, another path is built 

in the same way. A solution selection method (see Section 2.6 ) 

is then applied to pick one or multiple solutions from the path 

for further improvement by the iterated tabu search method (see 

Section 2.4 ). The improved solution is then used to update Ref- 

Set, PairSet and the best solution found S ∗ (see Section 2.3 ). When 

Pairset becomes empty, the algorithm re-initializes RefSet and then 
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