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a b s t r a c t 

In this paper, we present a new method to determine the optimal number of independent components 

after applying an Independent Component Analysis ( ICA ) to a set of mixed signals. The proposed method, 

called Linear Correlations between Components ( LCC ), uses the JADE algorithm to calculate the indepen- 

dent components. The LCC method allows to automatically select the optimal number of independent 

components in an unsupervised way without any previous knowledge. It has been tested using synthetic 

mixed signals where the number of pure (or independent) signals is known. This method is very simple, 

fast and easy to implement. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Given a set of mixed signals that have been created by com- 

bining a set of pure signals in unknown proportions, the Inde- 

pendent Components Analysis ( ICA ) ( Bouveresse & Rutledge, 2016 ; 

Hyvärinen & Oja, 20 0 0 ) is a blind-source separation method that 

enables the extraction of the pure signals, as well as their propor- 

tions, from the set of mixed signals. ICA has been applied in many 

domains in which signals have to be analysed ( Hao et al., 2009; He, 

Clifford, & Tarassenko, 2006; Krishnaveni, Jayaraman, Manoj Ku- 

mar, Shivakumar, & Ramadoss, 2005; Wang, Ding, & Hou, 2008 ). In 

particular, it is used to separate significant components from sig- 

nals and remove artefacts. 

ICA is based on the construction of the Independent Compo- 

nents ( IC ). The procedure for determining the optimal number of 

IC’ s, k , is an important issue when developing an ICA model. The 

value of k corresponds to the number of pure signals where each 

of them explains an independent phenomenon. In general, when 

the number of desired IC’ s , NIC , is smaller than the optimal one, 

some significant components are mixed together in the small num- 

ber of extracted IC’ s. On the other hand, if a NIC bigger than k is 

required, some of the significant components are decomposed into 

subcomponents (it means that not all the components are inde- 

pendent). In both cases, the components obtained neither repre- 

sent nor explain correctly the independent phenomena. Therefore, 
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it is necessary to use a validation method to determine k . This is 

the main goal of this paper. 

Some methods make use of some theoretical knowledge of the 

pure signals to determine k , such as the Amari index ( Rutledge 

& Jouan-Rimbaud Bouveresse, 2013 ). However, in practice this in- 

formation is not available and consequently any method to deter- 

mine k should work without a priori knowledge. This fact involves 

the need to find an unsupervised method to determine the opti- 

mal number of independent components when analyzing a set of 

mixed signals. 

Bouveresse and Rutledge (2016 ) show a review of the most in- 

teresting algorithms developed to find k : the Durbin–Watson crite- 

rion ( Rutledge & Barros, 2002 ), the ICA _by_Blocks ( Jouan-Rimbaud 

Bouveresse, Moya-González, Ammari, & Rutledge, 2012 ), the Ran- 

dom_ ICA _by_Blocks, the RV _ ICA _by_Blocks and the ICA _ corr _ Y . Un- 

like ICA _ corr _ Y , the first four methods do not require any specific 

prior knowledge. The Durbin–Watson criterion can only be used 

in structured signals although the other methods can be applied 

to any type of data. The methods that use blocks of data need to 

pay particular attention in selecting representative and compara- 

ble data blocks. Furthermore, these “blocks methods” cannot find 

k when the number of mixed signals is less than 2 × k . 

In addition to these methods, there is another approach based 

on the Principal Components Analysis ( PCA ) ( Semmlow, 2004; Jol- 

liffe, 2002 ) applied to the mixed signals. This algorithm considers 

the optimal number of IC’ s equal to the number of significant Prin- 

cipal Components. This method is simple but it is based on hy- 

potheses that are not always valid. Moreover, the optimal number 

of IC’ s is chosen from a scree plot. This plot is a descending curve 
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representing the eigenvalues vs. the Principal Component index. 

The optimal number of IC’ s is the value at which the eigenvalues 

start to level off. 

In the present work, JADE is the selected ICA algorithm ( Cardoso 

& Souloumiac, 1993 ). JADE consists of an eigenmatrix decomposi- 

tion of a higher-order cumulant tensor. The cumulants give a mea- 

sure of the non-Gaussianity of the components. For each NIC, JADE 

provides a stable result. This algorithm starts by restricting the op- 

eration of JADE to the NIC first principal components obtained from 

a PCA ( Cardoso Resources, 2016 ). 

In this paper, a simple and effective method to calculate k 

named Linear Correlations between Components ( LCC ) is shown. 

This algorithm uses JADE and it takes advantages of both the con- 

cept of independence and the fact that a decomposed IC appears 

when NIC is superior to k . The LCC method allows to automatically 

select k in an unsupervised way. 

Unlike LCC , every method described above needs at least a spe- 

cific condition to find k that reduces its capacity of being generic. 

In general, these methods require a graphical representation to se- 

lect k . 

On the other hand, the main characteristics of LCC are the fol- 

lowing: it is an unsupervised method, it determines k automati- 

cally, it does not need the support of a graphical representation, 

there is no restriction with respect to the type of pure signals, the 

mixed signals do not need to be ordered in blocks and it can cal- 

culate k when the number of mixed signals is inferior to 2 × k . 

However, as any method, it needs a number of mixed signals su- 

perior to k . 

The only limitation (similar to others methods) comes from the 

computational resources that JADE needs. Depending on the avail- 

able memory and CPU time, JADE cannot create a very large num- 

ber of components ( Cardoso Resources, 2016 ). 

In practice, the k found cannot be validated by using external 

information. One way to evaluate the result is to compare the re- 

sults of different algorithms. The LCC is a different method and 

can contribute to the evaluation process. However, LCC is robust 

enough and its results can be trusted. 

In Section 2 , ICA and some basic concepts used in LCC are re- 

viewed. In Section 3 , the proposed method LCC is described. In 

Section 4 , the LCC and other methods are tested using synthetic 

data. Finally, in Sections 5 and 6 , the discussion and conclusions of 

the paper are respectively presented. 

2. Background 

This section explains the ICA algorithm and reviews the con- 

cepts of independence and correlation between two random vari- 

ables. 

2.1. ICA 

Given a set of n mixed signals formed by combining k inde- 

pendent signals with p samples each, its ICA model is defined as 

M = A × S , where M is a n × p data matrix, A is a n × k mixing 

matrix and S is a k × p matrix of independent signals. 

The objective of ICA is to calculate A and S knowing only M. ICA 

does not need any knowledge concerning the nature of the source 

signals or their proportions. To estimate A, ICA requires the pure 

signals in S to be truly independent and non-Gaussian. Both con- 

ditions are usually met when the sources are real signals. 

The independence in ICA can be reached by maximizing the 

non-Gaussianity of the components or by minimizing the mutual 

information ( Wang et al., 2008 ). Around this concept, different ICA 

algorithms have been developed: FastICA ( Hyvärinen & Oja, 1997 ), 

JADE ( Cardoso & Souloumiac, 1993; Cardoso Resources, 2016 ), In- 

foMax ( Bell & Sejnowski, 1995 ), Mutual Information Least Depen- 

dent Component Analysis ( Stögbauer, Kraskov, Astakhov, & Grass- 

berger, 2004 ), Stochastic Non-Negative Independent Components 

Analysis ( Astakhov, Stögbauer, Kraskov, & Grassberger, 2006 ), RAD- 

ICAL ( Learned-Miller & Fisher III, 2003 ), etc. 

2.2. Independence and linear correlation 

Suppose a random variable X that can take v different values, 

with the probability that X = x i defined to be P ( X = x i ) = p i . Then 

the expectation ( E ) of X is defined as 

E ( X ) = x 1 p 1 + x 2 p 2 + · · · + x v x v (1) 

and its variance ( Var ) 

V ar ( X ) = E( X 

2 ) − ( E( X ) ) 
2 

(2) 

Suppose that X and Y are two random variables with expected 

values E ( X ), E ( Y ) and variances Var ( X ), Var ( Y ), respectively. The co- 

variance ( Cov ) of ( X,Y ) is defined by 

Cov ( X, Y ) = E ( X Y ) − E ( X ) E ( Y ) (3) 

and its correlation ( Corr ) 

Cor r ( X, Y ) = 

Cov ( X, Y ) 

( V ar ( X ) V ar ( Y ) ) 
1 
2 

(4) 

The Corr ( X,Y ) measures the linear dependence between two 

variables X and Y , giving a value between −1 and + 1 both inclu- 

sive. 

Two random variables X and Y are uncorrelated when their cor- 

relation coefficient is zero: Corr ( X,Y ) = 0. Being uncorrelated is the 

same as having zero covariance and therefore, from ( 3 ): 

E ( X Y ) = E ( X ) E ( Y ) (5) 

If X and Y are independent, then they are uncorrelated and con- 

sequently Corr ( X,Y ) = 0. If Corr ( X,Y ) � = 0, then X and Y present 

some grade of dependence. If Corr ( X,Y ) = 0, then X and Y can be 

either dependent or independent. 

Suppose that ( x m 

,y m 

) with m = 1,2, .... v form a sample from 

a pair of random variables X and Y . The distance covariance ( dCov ) 

( Székely, Rizzo, & Bakirov, 2007 ) is defined as: 

dCo v 2 ( X, Y ) = 

1 

v 2 
v ∑ 

j,h =1 

A j,h B j,h (6) 

where 

A j,h := a j,h − ā j. − ā .h + ā .. , a j,h = ‖ x j − x h ‖ j, h = 1 , 2 , ..... v 

B j,h := b j,h − b̄ j. − b̄ .h + ̄b .. , b j,h = ‖ y j − y h ‖ j, h = 1 , 2 , ..... v 

ā j. = 

1 

v 

v ∑ 

h =1 

a jh , ā .h = 

1 

v 

v ∑ 

j=1 

a jh , ā .. = 

1 

v 2 
v ∑ 

j,h =1 

a jh 

The notation is similar for b̄ j. , ̄b .h and b̄ .. . 

The distance variance ( dVar ) of X is 

d V a r 2 ( X ) = d Co v 2 ( X, X ) = 

1 

v 2 
v ∑ 

j,h =1 

A 

2 
j,h (7) 

The distance correlation ( dCorr ) ( Székely, Rizzo, & Bakirov, 2007 ) 

of two random variables X and Y is obtained by dividing their dis- 

tance covariance by the product of their distance standard devia- 

tions. The distance correlation is 

d Cor r 2 ( X, Y ) = 

d Co v 2 ( X, Y ) 

( d V a r 2 ( X ) d V a r 2 ( Y ) ) 
1 
2 

(8) 

The distance correlation is a measure of the statistical depen- 

dence between two random variables X and Y . This measure of de- 

pendence is zero if and only if X and Y are independent. Corr ( X,Y ) 

= 0 does not imply independence while dCorr ( X,Y ) = 0 implies 

independence. 
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