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a b s t r a c t 

A heuristic procedure based on novel recursive formulation of sinusoid (RFS) and on regression with pre- 

dictive least-squares (LS) enables to decompose both uniformly and nonuniformly sampled 1-d signals 

into a sparse set of sinusoids (SSS). An optimal SSS is found by Levenberg–Marquardt (LM) optimization 

of RFS parameters of near-optimal sinusoids combined with common criteria for the estimation of the 

number of sinusoids embedded in noise. The procedure estimates both the cardinality and the param- 

eters of SSS. The proposed algorithm enables to identify the RFS parameters of a sinusoid from a data 

sequence containing only a fraction of its cycle. In extreme cases when the frequency of a sinusoid ap- 

proaches zero the algorithm is able to detect a linear trend in data. Also, an irregular sampling pattern 

enables the algorithm to correctly reconstruct the under-sampled sinusoid. Parsimonious nature of the 

obtaining models opens the possibilities of using the proposed method in machine learning and in ex- 

pert and intelligent systems needing analysis and simple representation of 1-d signals. The properties 

of the proposed algorithm are evaluated on examples of irregularly sampled artificial signals in noise 

and are compared with high accuracy frequency estimation algorithms based on linear prediction (LP) 

approach, particularly with respect to Cramer–Rao Bound (CRB). 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

1.1. Problem statement 

Let { w k } K k =1 
denote a time series, where w k ∈ � ( k = 1 , ..., K ) is 

the k th observation obtained at the corresponding time point t k , 

{ t k } K k =1 
. Suppose a time series representing a finite number of sine 

waves embedded in noise. Suppose also that a time series may 

have a nonzero mean value and/or a linear trend. The objective of 

this paper is spectral analysis and modeling of a time series out- 

lined above and represented by: 

w k = o + κt k + 

N ∑ 

n =1 

[ A n · sin ( ω n · t k + ϕ n ) ] + s k , k = 1 , ..., K, (1) 

where o and κ denote the corresponding y-intercept at t = 0 and 

the slope of a linear trend line, A n , ω n and ϕ n are the correspond- 

ing amplitude, radian frequency and phase of the n th sine wave 

and s k represents the noise. 
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1.2. Related work 

A non-uniform sampling is common to many long-time ground- 

based astronomical observations including spectra and time se- 

ries ( Lomb, 1976; Scargle, 1982 ) . A number of papers dealing with 

the decomposition of a time series into a SSS are based on the 

least-squares spectral analysis and have been published very early. 

Methods based on the least-squares fit of sinusoids to data are in- 

troduced, also known as LS periodogram (LSP) analysis, formulated 

as LS fitting problem: 

min 

A n ≥0 

ω n ∈ [ 0 , ω max ] 

ϕ n ∈ [ −π,π ] 

K ∑ 

k =1 

[ 

w k −
N ∑ 

n =1 

A n · sin ( ω n · t k + φn ) 

] 2 

, (2) 

where ω max denotes maximum expected angular frequency. Fre- 

quency estimation methods can be divided into the two main 

classes: nonparametric and parametric. The nonparametric fre- 

quency estimation is based on the Fourier transform and its ability 

to resolve closely spaced sinusoids is limited by the length of sam- 

pled data. On the other hand the parametric approach enables to 

achieve a higher resolution since it assumes the generating model 

with known functional form, which satisfies the signal ( So, Chan, 

Chan, & Ho, 2005 ). 
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The earliest nonparametric frequency estimation methods are 

based on LSP analysis. Barning (1962) used least-squares fitting 

to calculate the amplitudes of sine waves from the corresponding 

frequencies selected from periodogram. Vaníček (1969) first pro- 

posed successive spectral analysis of equally spaced data and later 

he extended the analysis to nonumiformly sampled data ( Vaníček, 

1970 ). Lomb, (1976) analyzed statistical properties of irregularly 

spaced data based on periodogram analysis. He has shown that, 

due to the correlation between noise at different frequencies, noise 

has less effect on a spectrum than it could be expected. Scargle 

(1982) studied the use of periodogram with irregularly spaced 

data. He concluded that periodogram analysis and least-squares fit- 

ting of sine waves to data are exactly equivalent. Foster (1995) pro- 

posed a sequential method for removing false peaks from power 

spectra that can be viewed as Matching Pursuit ( Mallat & Zhang, 

1993 ), a general procedure for computing adaptive signal repre- 

sentations which decomposes any signal into a linear expansion of 

waveforms that are selected from a redundant dictionary of func- 

tions. Bourguignon, Carfantan, and Idier, (2007) estimated spectral 

components from irregularly sampled data. Sparse representation 

of noisy data is searched for in an arbitrarily large dictionary of 

complex-valued sinusoidal signals, which can be viewed as Ba- 

sis Pursuit Denoising problem ( Chen, Donoho, & Saunders, 2001 ). 

The nonparametric method for spectral analysis of nonuniform se- 

quences of real-valued data named real-valued iterative adaptive 

approach (RIAA) is proposed by Stoica, Li, and He (2009) . It can be 

interpreted as an iteratively weighted LSP. The method can be used 

for spectral analysis of general data sequences but is most suitable 

for zero-mean sequences with discrete spectra. Similar problems, 

dealing with sparse reconstruction, have been investigated recently 

in scope of compressed sensing, ( Boufounos, Cevher, Gilbert, Li, & 

Strauss, 2012; Nichols, Oh, & Willett, 2014; Panahi & Viberg, 2014; 

Tang, Bhaskar, Shah, & Recht, 2012; Teke, Gurbuz, & Arikan, 2013 ), 

illustrating only signal reconstruction errors but not demonstrating 

that the proposed methods achieve a Cramer–Rao bound, above 

some SNR threshold, for all the real frequencies embedded in the 

signal. 

Well-known parametric frequency estimation methods are 

maximum likelihood (ML) ( Bresler & Macovski, 1986; Rife, & 

Boorstyn, 1976 ), and nonlinear least squares (NLS) ( Stoica & Neho- 

rai, 1988 ) and the methods based on linear prediction (LP) prop- 

erty of sinusoids like Yule–Walker equations ( Chan, & Langford, 

1982 ), total least squares, ( Rahman, & Yu, 1987 ), iterative filter- 

ing ( Li, & Kedem, 1994 ), MUSIC and ESPRIT ( Porat, 2008 ), weighted 

least squares ( So et al., 2005 ). Under additive white Gaussian noise 

the ML and NLS methods are equivalent and achieve Cramer–Rao 

lower bound (CRLB) asymptotically, but they are computationally 

demanding. The above mentioned methods, based on LP property, 

provide suboptimum estimation performance but they are compu- 

tationally efficient. The parametric methods based on linear pre- 

diction ( Chan, Lavoie, & Plant, 1981; Dash, & Hasan, 2011; So et al., 

2005; Yang, Xi, & Guo, 2007 ) enable to retrieve the sinusoids from 

a uniformly sampled sinusoidal signal in noise when the number 

of sinusoids in the signal is known a priori . So et al. (2005) de- 

veloped two high accuracy frequency estimators for multiple real 

sinusoids in white noise based on the LP approach. First, they de- 

veloped a constrained least squares frequency estimator named 

reformulated Pisarenko harmonic decomposer (RPHD) and then 

they improved it through the technique of weighted least squares 

(WLS) with a generalized unit-norm (WLSun) and monic (WLSm) 

constraint. The method assumes uniformly sampled data and the 

number of sinusoids to be known a priori . 

The heuristic procedure elaborated in this paper is also based 

on the LP property of a sinusoid and is intended for recovery of 

frequency-sparse signals in noise. It can be used in signal process- 

ing, machine learning and expert and intelligent systems to fa- 

cilitate solving the classification, diagnosis, monitoring or process 

control tasks needing analysis and parsimonious representation of 

signals, including the signals in technical systems, bio-signals, as- 

tronomical observations, etc. The proposed algorithm enables to 

retrieve the sinusoids from either uniformly or nonuniformly sam- 

pled data. In order to adapt it to nonuniform sampling we first 

reformulate the LP property of a sinusoid and we named it a re- 

cursive formulation of a sinusoid (RFS). Then we formulate a si- 

nusoidal model based on RFS and the corresponding procedures 

for the estimation of RFS parameters based on the minimization 

of LS error. By combining the RFS approach with the well-known 

methods for the estimation of the number of sinusoids in noise 

the proposed procedure enables to retrieve the sinusoids itera- 

tively, one at a time, and to determine the order of the gener- 

ating model. The proposed method assumes neither a zero mean 

sequence nor the number of sinusoids in a signal to be known 

a priori . The accuracy of the frequency estimation procedure pro- 

posed in this paper is compared with very high accuracy of fre- 

quency estimation obtained by LP approach reported by So et al. 

(2005) . For a frequency-sparse signal the computational complex- 

ity of both methods is comparable, O ( K 

3 ). 

1.3. Methods for detection of the number of sinusoids 

Most parametric methods for detection of sinusoids corrupted 

with noise minimize the sum of a data fit (likelihood) term and the 

complexity penalty term where the penalty term is usually derived 

via Akaike information criterion (AIC) ( Akaike, 1974 ), Bayesian in- 

formation criteria (BIC) ( Schwarz, 1978 ) or minimum description 

length (MDL) ( Rissanen, 1978 ). A review of information criterion 

rules for model-order selection with the summary of necessary 

steps used to adapt a rule to a specific problem is given in Stoica 

and Selen (2004 ). In this paper the attention is restricted to effi- 

cient detection criteria (EDC) type estimators ( Djuri ́c, 1996 , 1998; 

Nadler & Kontorovich, 2011 ). EDC type estimators determine the 

number of sinusoids by minimizing: 

� 

M = arg min 

M=0 , 1 , 2 ... 
− ln L 

(
� 

βM 

, w 

)
+ M C K , (3) 

where w is the observed time series of length K , 
� 

βM 

are parameter 

estimates of a model of order M , L ( 
� 

βM 

, w ) is the corresponding 

likelihood term and C K is the model-complexity penalty term that 

captures the dependency of the penalty on the number of samples 

K . For the unknown noise level the log-likelihood term in ( 3 ) can 

be approximated by: 

ln L 

(
� 

βM 

, w 

)
= −K 

2 

ln 

{ 

K ∑ 

k =1 

[ 
w k − P M,k 

(
� 

βM 

)] 2 } 

, (4) 

where P M,k ( 
� 

βM 

) denotes the approximation of w k at time point t k 
made by a model of order M . By substituting ( 4 ) for log-likelihood 

in ( 3 ) we obtain: 

� 

M = arg min 

M=0 , 1 , 2 ,... 

K 

2 

ln 

{ 

K ∑ 

k =1 

[ 
w k − P M,k 

(
� 

βM 

)] 2 } 

+ M C K . (5) 

By considering a Bayesian formulation and selecting the model 

with maximum a posteriori probability (MAP) criterion for sinu- 

soids with unknown frequencies amplitudes and phases Djuri ́c 

(1996) derived the following penalty term 

C K = ( 5 M / 2 ) ln K (6) 

and he concluded that the parameters that can be determined 

more precisely should receive stronger penalty. Nadler and Kon- 

torovich (2011) proposed the estimator inspired by ideas from ex- 

treme value theory (EVT) and the maxima of stochastic fields with 
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