ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

The Journal of Systems and Software 79 (2006) 1661-1678

&%) The Journal of

A2

Systems and
Software

www.elsevier.com/locate/jss

Distributed dynamic slicing of Java programs

Durga P. Mohapatra *, Rajeev Kumar ®*, Rajib Mall °, D.S. Kumar °, Mayank Bhasin °

* Department of Computer Science and Engineering, National Institute of Technology, Rourkela, Orissa 769 008, India
® Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur WB 721 302, India

Received 21 February 2005; received in revised form 15 January 2006; accepted 15 January 2006
Available online 28 February 2006

Abstract

We propose a novel dynamic slicing technique for distributed Java programs. We first construct the intermediate representation of a
distributed Java program in the form of a set of Distributed Program Dependence Graphs (DPDG). We mark and unmark the edges of the
DPDG appropriately as and when dependencies arise and cease during run-time. Our algorithm can run parallely on a network of com-
puters, with each node in the network contributing to the dynamic slice in a fully distributed fashion. Our approach does not require any
trace files to be maintained. Another advantage of our approach is that a slice is available even before a request for a slice is made. This
appreciably reduces the response time of slicing commands. We have implemented the algorithm in a distributed environment. The

results obtained from our experiments show promise.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Program slicing; Dynamic slicing; Program dependence graph; Debugging; Object-oriented program; Multithreading; Java; Distributed

programming

1. Introduction

As software applications grow larger and become more
complex, program maintenance activities such as adding
new functionalities, porting to new platforms, and correct-
ing the reported bugs consume enormous effort. This is
especially true for distributed object-oriented programs.
In order to cope with this scenario, programmers need
effective computer-supported techniques for decomposition
and dependence analysis of programs. Program slicing is
one technique for such decomposition and dependence
analysis. A program slice with respect to a specified vari-
able v at some program point P consists of those parts of
the program which potentially affect the value of v at p.
The pair (v,p) is known as the slicing criterion. A static slice
is valid for all possible executions of a program, while a
dynamic slice is meaningful for only a particular execution
of a program (Ashida et al., 1999; Binkley et al., 1996;

" Corresponding author. Tel.: +91 5122596074; fax: +91 5122597586.
E-mail addresses: durga@nitrkl.ac.in (D.P. Mohapatra), rkumar@
cse.iitkgp.ernet.in (R. Kumar), rajib@cse.iitkgp.ernet.in (R. Mall).

0164-1212/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/.jss.2006.01.009

Korel and Laski, 1988). Program slicing has been found
to be useful in a variety of applications such as debugging,
program understanding, testing and maintenance (Agrawal
et al., 1993; Gallagher and Lyle, 1991; Goswami and Mall,
2002; Kamkar, 1993; Mall, 2003; Mund et al., 2002; Zhang
et al., 2004).

Many real life object-oriented programs are distributed
in nature and run on different machines connected to a net-
work. The emergence of message passing standards, such
as MPI, and the commercial success of high speed net-
works have contributed to making message passing pro-
gramming common place. Message passing programming
has become an attractive option for tackling the vexing
issues of portability, performance, and cost effectiveness.
As distributed computing gains momentum, development
and maintenance tools for these distributed systems seem
to gain utmost importance.

Development of real life distributed object-oriented pro-
grams presents formidable challenge to the programmer. It
is usually accepted that understanding and debugging of
distributed object-oriented programs are much harder
compared to those of sequential programs. A typical

mailto:durga@nitrkl.ac.in
mailto:rkumar@ cse.iitkgp.ernet.in
mailto:rkumar@ cse.iitkgp.ernet.in
mailto:rajib@cse.iitkgp.ernet.in

1662 D.P. Mohapatra et al. | The Journal of Systems and Software 79 (2006) 1661-1678

nature of distributed programs, lack of global states,
unsynchronized interactions among threads, multiple
threads of control and a dynamically varying number of
processes are some reasons for this difficulty. An increasing
amount of effort is being spent in debugging, testing and
maintaining these products. Slicing techniques promise to
come in handy at this point. Through the computation of
a slice for a message passing program, one can significantly
reduce the amount of code that a maintenance engineer has
to analyze to achieve some maintenance tasks. However,
research attempts in program slicing area have focused
attention largely on sequential programs. Many research
reports addressed efficient handling of data structures such
as arrays, pointers, etc. in the sequential framework.
Attempts have also been made to deal with unstructured
constructs like goto, break, etc. Although researchers have
reported extension of the traditional concept of program
slicing to static slicing of distributed programs, dynamic
slicing of distributed object-oriented programs has scarcely
been reported in the literature.

Any effective dynamic slicing technique for distributed
object-oriented programs needs to address the important
concepts associated with object-oriented programs such
as encapsulation, inheritance, polymorphism and message
passing. This poses new challenges during slice computa-
tion which are not encountered in traditional program slic-
ing and render representation and analysis techniques
developed for imperative language programs inadequate.
So, the object-oriented features need to be considered care-
fully in the process of slicing.

We have already mentioned that object-oriented pro-
grams are often large. Therefore, to be practically useful
in interactive applications such as debugging, program
traces should be avoided in the slicing process. Maintaining
execution traces become unacceptable due to slow I/O
operations. Further, to be useful in a distributed environ-
ment, the construction of slices should preferably be
constructed in a distributed manner. Each node in a
distributed system should contribute to the slice by deter-
mining its local portion of the global slice in a fully distrib-
uted fashion.

Keeping the above identified objectives in mind, in this
paper we propose an algorithm for computing dynamic
slices of distributed Java programs. Though we have con-
sidered only Java programs, programs in any other lan-
guage can be handled by making only small changes to
our algorithm. We have concentrated only on the commu-
nication and concurrency issues in Java. Standard sequen-
tial and object-oriented features are not discussed in this
paper, as these are easily found in the literature (Ashida
et al., 1999; Larson and Harrold, 1996; Liang and Larson,
1998; Krishnaswamy, 1994; Umemori et al., 2003; Wakin-
shaw et al., 2002; Wang and RoyChoudhury, 2004). For
example, Larson and Harrold (1996) have discussed the
techniques to represent the basic object-oriented features.
Their technique can easily be incorporated into our algo-
rithm to represent the basic object-orientation features.

We have named our proposed algorithm distributed
dynamic slicing (DDS) algorithm for Java programs. To
achieve fast response time, our algorithm can run in a fully
distributed manner on several machines connected through
a network, rather than running it on a centralized machine.
We use local slicers at each node in a network. A local
slicer is responsible for slicing the part of the program
executions occurring on the local machine.

Our algorithm uses a modified program dependence
graph (PDG) (Horwitz et al., 1990) as the intermediate rep-
resentation. We have named this representation distributed
program dependence graph (DPDG). We first statically con-
struct the DPDG before run-time. Our algorithm marks
and unmarks the edges of the DPDG appropriately as
and when dependencies arise and cease during run-time.
Such an approach is more time and space efficient and also
completely does away with the necessity to maintain a trace
file. This eliminates the slow file I/O operations that occur
while accessing a trace file. Another advantage of our
approach is that when a request for a slice for any slicing
criterion is made, the required slice is already available.
This appreciably reduces the response time of slicing
commands.

The rest of the paper is organized as follows. In Section
2, we present some basic concepts and definitions that will
be used in our algorithm. In Section 3, we discuss the inter-
mediate program representation: distributed program
dependence graph (DPDG). In Section 4, we present our
distributed dynamic slicing (DDS) algorithm for distributed
object-oriented programs. In Section 5, we briefly present
an implementation of our algorithm. In Section 6, we
compare our algorithm with related algorithms. Finally,
Section 7 concludes the paper.

2. Basic concepts

Before presenting our dynamic slicing algorithm, we
first briefly discuss the relevant features of Java. Then, we
introduce a few basic concepts and definitions that
would be used in our algorithm. In the following discus-
sions and throughout the rest of the paper, we use the
terms a program statement, a node and a vertex inter-
changeably.

2.1. Concurrency and communication in Java

Java supports concurrent programming using threads. A
thread is a single sequential flow of control within a pro-
gram. A thread is similar to a sequential program in the
sense that each thread also has a beginning, an execution
sequence and an end. Also, at any given time during the
run of a thread, there is a single point of execution. How-
ever, a thread itself is not a program; it cannot run on its
own. To support thread programming, Java provides a
Thread class library, which defines a set of standard oper-
ations on a thread such as start(), stop(), join(), suspend(),
resume() and sleep(), etc. (Naughton and Schildt, 1998).

Download English Version:

https://daneshyari.com/en/article/494344

Download Persian Version:

hitps://daneshyari.com/article/494344

Daneshyari.com

https://daneshyari.com/en/article/494344
https://daneshyari.com/article/494344
https://daneshyari.com

