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a b s t r a c t 

This paper provides a new approach to feature selection based on the concept of feature filters, so that 

feature selection is independent of the prediction model. Data fitting is stated as a single-objective op- 

timization problem, where the objective function indicates the error of approximating the target vector 

as some function of given features. Linear dependence between features induces the multicollinearity 

problem and leads to instability of the model and redundancy of the feature set. This paper introduces 

a feature selection method based on quadratic programming. This approach takes into account the mu- 

tual dependence of the features and the target vector, and selects features according to relevance and 

similarity measures defined according to the specific problem. The main idea is to minimize mutual de- 

pendence and maximize approximation quality by varying a binary vector that indicates the presence of 

features. The selected model is less redundant and more stable. To evaluate the quality of the proposed 

feature selection method and compare it with others, we use several criteria to measure instability and 

redundancy. In our experiments, we compare the proposed approach with several other feature selec- 

tion methods, and show that the quadratic programming approach gives superior results according to 

the criteria considered for the test and real data sets. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

This paper presents a new approach to avoiding multicollinear- 

ity in feature selection. Multicollinearity is a strong correlation be- 

tween features that affect the target vector simultaneously. In the 

presence of multicollinearity, common methods of regression anal- 

ysis, such as least squares, build unstable models of excessive com- 

plexity. The formal definitions of model stability, complexity and 

redundancy are given in Section 5 . 

Most existing feature selection methods that solve the multi- 

collinearity problem are based on heuristics ( Leardi, 2001; Olul- 

eye, Armstrong, Leng, & Diepeveen, 2014 ), greedy searches ( Guyon, 

2003; Ladha & Deepa, 2011 ) or regularization techniques ( El- 

Dereny & Rashwan, 2011; Zou & Hastie, 2005 ). These approaches 

do not take into account the data set configuration and do not 

guarantee the optimality of the specially designed feature subset 

( Katrutsa & Strijov, 2015 ). In contrast, we propose a quadratic pro- 

gramming approach ( Rodriguez-Lujan, Huerta, Elkan, & Cruz, 2010 ) 

to solving the multicollinearity problem that avoids disadvantages 
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mentioned above. This approach is based on two ideas: represent- 

ing feature presence as a binary vector, and defining the feature 

subset quality criterion in quadratic form. The first term of the 

quadratic form is the pairwise feature similarity, and the linear 

term is the relevance of features to the target vector. Therefore, we 

can state the feature selection problem with a quadratic objective 

function and a Boolean vector domain. 

Measures of feature similarity and relevance are problem- 

dependent and need to be defined according to the application be- 

fore performing feature selection. These measures should take into 

account the data set configuration to remove redundant, noisy and 

multicollinear features, selecting those that are significant for tar- 

get vector approximation. We consider the correlation coefficient 

( Hall, 1999 ) and mutual information ( Estévez, Tesmer, Perez, & Zu- 

rada, 2009 ) between features as measures of feature similarity and 

between features and the target vector as a measure of feature rel- 

evance. These measures guarantee a positive semidefinite quadratic 

form. 

To solve the convex optimization problem we need to relax the 

binary domain to a continuous domain. This relaxation allows the 

convex optimization problem to be efficiently solved by state-of-the- 

art solvers such as CVX, a package for specifying and solving con- 

vex programs ( Grant & Boyd, 2008; 2014 ). To translate the contin- 
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uous solution to a binary solution, we set a significance threshold 

that defines a number of features to be selected. If the feature sim- 

ilarity function does not give a positive semidefinite matrix, then 

the optimization problem is not convex and convex relaxation is 

required. In this case, we propose using a semidefinite program- 

ming relaxation ( Naghibi, Hoffmann, & Pfister, 2015 ). Such feature 

similarity functions are out of the scope of this paper. In addition, 

the proposed approach gives a simple visualization of the feature 

weights in the target vector approximation. This visualization helps 

to tune the threshold. 

We perform experiments on special test data sets generated ac- 

cording to the procedure proposed in Katrutsa and Strijov (2015) . 

These data sets demonstrate different cases of multicollinearity be- 

tween features and correlation between features and the target 

vector. Experiments show that the proposed approach outperforms 

the other feature selection methods considered on every type of 

test data set. Quadratic programming feature selection also gives 

better quality results on the test and real data sets according to 

various simultaneous evaluation criteria in contrast to other fea- 

ture selection methods. 

The main contributions of this paper are: 

• addressing the multicollinearity problem with a quadratic pro- 

gramming approach and investigating its properties; 
• evaluating the performance of the quadratic programming fea- 

ture selection method on test data sets according to various cri- 

teria; 
• comparing the proposed feature selection method with other 

methods on test and real data sets, and showing that the pro- 

posed method gives better feature subsets than the other meth- 

ods. The feature subset quality is measured by external criteria. 

1.1. Related works. A comprehensive survey of feature selection al- 

gorithms can be found in Li et al. (2016) , which gives a systematic 

analysis of filter, wrapper, and embedded methods. 1 Various strate- 

gies have been proposed for detecting multicollinearity and solving 

the multicollinearity problem ( Askin, 1982; Belsley, Kuh, & Welsch, 

2005; Leamer, 1973 ). One way to solve the multicollinearity prob- 

lem is to use feature selection methods ( Belsley et al., 2005; Liu & 

Motoda, 2012 ). These are based on scoring functions that estimate 

the quality of a feature subset, or on a heuristic sequential search 

procedure. 

This paper considers feature selection methods based on scor- 

ing functions, such as least angle regression (LARS) ( Efron, Hastie, 

Johnstone & Tibshirani, 2004 ), Lasso ( Tibshirani, 1994 ), Ridge ( El- 

Dereny & Rashwan, 2011 ), and the Elastic Net ( Zou & Hastie, 2005 ), 

and based on sequential search, such as Stepwise ( Harrell, 2001 ) 

and the genetic algorithm ( Ghamisi & Benediktsson, 2015 ). The 

Lasso scoring function is the weighted sum of the � 2 norm of the 

residuals and the � 1 norm of the parameter vector. This scoring 

function gives a good approximation to the target vector and pe- 

nalizes large elements in the parameter vector. Moreover, the � 1 
norm of the parameter vector induces sparsity in the obtained pa- 

rameter vector and therefore performs feature selection. The Ridge 

scoring function is the same as in Lasso, but uses the � 2 norm in- 

stead of the � 1 norm. This approach makes the solution more sta- 

ble, but does not give a sparse parameter vector and selects fea- 

tures less aggressively than Lasso. The Elastic Net ( Zou & Hastie, 

2005 ) uses a linear combination of the � 1 and � 2 norms of the pa- 

rameter vector as a penalty for the residual norm. This penalty al- 

lows us to combine the advantages of both Lasso and Ridge. Two 

common problems for these feature selection methods are tuning 

1 Implementations of several feature selection algorithms are available from a li- 

brary developed by Arizona State University ( http://featureselection.asu.edu) . 

the weights corresponding to the penalty terms and taking into ac- 

count the structure of a data set. A study of feature selection meth- 

ods that use sequential search can be found in Aha and Bankert 

(1996) . The genetic algorithm ( Ghamisi & Benediktsson, 2015 ) uses 

a random search that maximizes the objective function and adds 

or removes some features on each iteration, while Stepwise starts 

from an empty feature set and sequentially adds a single feature 

on each interation according to the importance determined by an 

F-test. 

2. Feature selection problem statement 

Let X = [ χ1 , . . . , χn ] ∈ R 

m ×n be a design matrix, where χ j ∈ R 

m 

is the j th feature. Denote by J = { 1 , . . . , n } the feature index set, 

and let A ⊆ J be a feature index subset. Let y ∈ R 

m be the target 

vector. The data fitting problem is to find a parameter vector w 

∗ ∈ 

R 

n such that 

w 

∗ = arg min 

w ∈ R n 
S(w , A| X , y , f ) , (1) 

where S is the error function, which validates the quality of the 

parameter vector w and the corresponding feature index subset A 

given a design matrix X , a target vector y and a function f . The 

function f approximates the target vector y . 

This study explores the linear function 

f (X , A , w ) = X A w , 

where X A is the reduced design matrix consisting of features with 

indices in A , and the quadratic error function 

S(w , A| X , y , f ) = ‖ f (X , A , w ) − y ‖ 

2 
2 . (2) 

The features are assumed to be noisy, irrelevant or multi- 

collinear, which leads to additional error in estimating the opti- 

mum vector w 

∗ and increases the instability of this vector. Feature 

selection methods can be used to remove certain features from the 

design matrix X . The feature selection procedure reduces the di- 

mensionality of problem (1) and improves the stability of the op- 

timum vector w 

∗. The feature selection problem is 

A 

∗ = arg min 

A⊆J 
Q(A| X , y ) , (3) 

where Q : A → R is a quality criterion that determines the qual- 

ity of a selected feature index subset A ⊆ J . Problem (3) does not 

necessarily require estimation of the optimum parameter vector 

w 

∗. It uses the relationships between the features χ j , j ∈ J and 

the target vector y . 

Let a ∈ B 

n = { 0 , 1 } n be an indicator vector such that a j = 1 if 

and only if j ∈ A . Then problem (3) can be rewritten as 

a ∗ = arg min 

a ∈ B n 
Q(a | X , y ) , (4) 

where Q : B 

n → R is another form of the criterion Q with domain 

B 

n . The vector a ∗ and the index set A 

∗ are related by 

a ∗j = 1 ⇔ j ∈ A 

∗, j ∈ J . (5) 

2.1. Multicollinearity problem 

In this subsection, we give a formal definition and some special 

cases of the multicollinearity problem. Assume that the features χj 

and the target vector y are normalized: 

‖ y ‖ 2 = 1 and ‖ χ j ‖ 2 = 1 , j ∈ J . (6) 

Consider an active index subset A ⊆ J . 

Definition 2.1. The features with indices in the set A are multi- 

collinear if there exist an index j , coefficients λk , an index k ∈ A \ j
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