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a b s t r a c t 

Neuro-fuzzy systems have been proved to be an efficient tool for modelling real life systems. They are 

precise and have ability to generalise knowledge from presented data. Neuro-fuzzy systems use fuzzy sets 

– most commonly type-1 fuzzy sets. Type-2 fuzzy sets model uncertainties better than type-1 fuzzy sets 

because of their fuzzy membership function. Unfortunately computational complexity of type reduction 

in general type-2 systems is high enough to hinder their practical application. This burden can be allevi- 

ated by application of interval type-2 fuzzy sets. The paper presents an interval type-2 neuro-fuzzy sys- 

tem with interval type-2 fuzzy sets both in premises (Gaussian interval type-2 fuzzy sets with uncertain 

fuzziness) and consequences (trapezoid interval type-2 fuzzy set). The inference mechanism is based on 

the interval type-2 fuzzy Łukasiewicz, Reichenbach, Kleene-Dienes, or Brouwer–Gödel implications. The 

paper is accompanied by numerical examples. The system can elaborate models with lower error rate 

than type-1 neuro-fuzzy system with implication-based inference mechanism. The system outperforms 

some known type-2 neuro-fuzzy systems. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Neuro-fuzzy systems have been proved to be an efficient tool 

for modelling real life systems. They are precise and have ability 

to generalise knowledge from presented data. Their important ad- 

vantage is interpretability of created models. Some kinds of neuro- 

fuzzy systems have been proved to be universal approximators 

that satisfy the Stone–Weierstrass theorem ( Kosko, 1994 ). Neuro- 

fuzzy systems use fuzzy sets to handle vagueness. Mendel and John 

(2002) list noise and uncertainty of data among main sources of 

uncertainties in fuzzy systems with type-1 fuzzy sets. The mem- 

bership function of type-1 fuzzy sets has strictly crisp values. That 

deteriorates the ability to represent noisy or uncertain data. Type- 

2 fuzzy sets ( Zadeh, 1975 ) model better such uncertainties because 

of their fuzzy membership function. 

Type-1 and type-2 fuzzy systems share the same architecture, 

they have four main components: fuzzifier, inference engine with a 

rule base, and output processor. In type-2 fuzzy systems the output 

processor has two tasks: type-reduction and defuzzification. Type 

reduction is the main cause of high computation burden of the 

type-2 fuzzy systems. It is their main disadvantage and can be mit- 

igated by application of interval type-2 (IT2) fuzzy sets. An interval 

type-2 fuzzy set is a kind of type-2 fuzzy set. A secondary mem- 
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bership function of an interval type-2 (IT2) fuzzy sets can have 

only two values: 0 or 1. A system is called an interval type-2 fuzzy 

system when it has interval type-2 sets in some part (mostly in 

rule premises). 

Interval type-2 neuro-fuzzy systems have been profoundly the- 

oretically analysed by Liang and Mendel (20 0 0) , Karnik, Mendel, 

and Liang (1999) , and Mendel and Rajati (2014) . These papers 

present the theory and design patterns. Mendel (2004) pro- 

vides mathematical formulae for steepest-descent parameter tun- 

ing of type-2 fuzzy systems with a Karnik–Mendel type reducer. 

The Karnik–Mendel algorithm ( Karnik & Mendel, 2001 ) is consis- 

tent with an extension principle. Unfortunately this complicates 

the theoretical analysis and implementation of systems. To avoid 

this Wu and Mendel (2002) , Nie and Tan (2008) , Du and Ying 

(2010) formulate type-reducers in a closed-form formulae. These 

solutions do not satisfy the requirements of the fuzzy theory, but 

are easier to analyse than the Karnik–Mendel algorithm. Neuro- 

fuzzy systems can be ordered starting with type-1 (T1) through 

interval type-2 (IT2) to general type-2 systems. This sequence 

presents both increase in ability to handle uncertainties and com- 

putational burden. Computational complexity of type reduction in 

general type-2 systems is high enough to hinder their practical ap- 

plication. Interval type-2 systems have lower computational over- 

head than general type-2 fuzzy systems. They can better handle 

uncertainties and can model more complex surfaces than type-1 

systems with similar number of rules. An interval type-2 fuzzy sys- 
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tem with the KM type reducer cannot be implemented by a type-1 

fuzzy system using the same rule base ( Wu, 2012 ). 

There have been proposed many interval type-2 neuro-fuzzy 

systems. Most systems have interval type-2 fuzzy sets only in 

premises. The DIT2LIFR-IP system ( Juang & Chen, 2013 ) uses in- 

terval type-2 sets in premises and zero-order TSK interval type- 

2 consequences (interval constants). The initial rule base is gen- 

erated by a self-splitting clustering algorithm in the input–output 

space. Aliasghary, Eksin, Guzelkaya, and Kumbasar (2015) describe 

an interval type-2 fuzzy system with diamond-shaped type-2 fuzzy 

sets in premises and singletons in consequences and Nie–Tan type 

reduction. Melin, Mendoza, and Castillo (2010) present an inter- 

val type-2 fuzzy inference system with interval fuzzy constants in 

consequences. Starczewski and Rutkowski (2003) propose a type- 

2 neuro-fuzzy system with interval fuzzy membership grades in 

rule antecedents and intervals in consequents. Chen and Chang 

(2011a) apply interval type-2 Gaussian fuzzy sets with fuzzy cores 

in premises for sparse fuzzy rule-based system. Juang and Tsao 

(2008a) propose a self-evolving interval type-2 fuzzy neural net- 

work with online structure and parameter learning. The premises 

of the rules are built with interval type-2 fuzzy sets with uncer- 

tain means. The consequences follow a TSK pattern. The rules are 

generated with an online clustering method. 

Non interval type-2 fuzzy systems are not as popular as interval 

type-2 systems. One of the examples may be a system with type-2 

fuzzy set in premises (with triangular secondary membership func- 

tion) and Mamdani type consequences ( Starczewski, Scherer, Kory- 

tkowski, & Nowicki, 2008 ). 

Tuning of (interval) type-2 neuro-fuzzy system is a challenging 

task in spite of wide research ( Starczewski et al., 2008 ). Many tech- 

niques are applied, eg: gradient descent and the rule-ordered re- 

cursive least squares algorithm ( Juang & Chen, 2013 ), hybrid back- 

propagation ( Castro, Castillo, Melin, & Rodríguez-Díaz, 2009 ), ge- 

netic algorithm ( Park & Lee, 2013 ), backpropagation and AdaBoost 

algorithms ( Starczewski et al., 2008 ). 

A fuzzy IF-THEN rule is a kind of fuzzy implication. Fuzzy im- 

plications have been deeply analysed from mathematical point of 

view. In the proposed system is an implication-based ( Dubois & 

Prade, 1996 ) fuzzy inference system where fuzzy rules are evalu- 

ated as fuzzy implication. This approach is also called an implica- 

tive or deductive approach ( Št ̌epni ̌cka & Baets, 2013 ). 

The novelty of this paper is a neuro-fuzzy system with two fea- 

tures: (1) it is an interval type-2 neuro-fuzzy system (with IT2 sets 

both in premises and consequences of rules) with (2) implication- 

based inference mechanism. To the best of our knowledge this is 

the first attempt at creation of an interval type-2 (IT2) fuzzy sys- 

tem with an implication-based inference mechanism and IT2 fuzzy 

sets both in premises and consequences of the rules. 

Our system is an extension of the ANNBFIS (Artificial Neu- 

ral Network Based Fuzzy Inference System) system ( Czogała & 

Łęski, 20 0 0 ). This type-1 system has been proved to be precise 

and fast in calculations and has many applications and modifica- 

tions as ε-insensitive learning ( Leski, 2003 ), rough-fuzzy paradigm 

( Siminski, 2015 ), deterministic annealing optimisation ( Czaba ́nski, 

2006 ), subspace approach ( Siminski, 2017 ), hybrid system with 

SVM ( Siminski, 2014a; 2014b ), incomplete data mining ( Siminski, 

2016a ), and inversion of neuro-fuzzy system ( Siminski, 2016b ). 

The paper is organized as follows: Section 2 describes the inter- 

val type-2 fuzzy implications. Section 3 describes the proposed in- 

terval type-2 neuro-fuzzy system with implication-based inference 

mechanism. Section 4 shortly presents the creation of rules from 

train data. Section 5 describes datasets and experiments. Finally 

Section 6 summarizes the paper. The calculation of derivatives is 

moved to Appendix to keep the text clearer. 

2. Interval type-2 implication 

The paper describes an interval type-2 neuro-fuzzy system with 

implication-based inference mechanism (IT2NFSIB). Each rule in 

rule base is a fuzzy interval type-2 implication. Alcalde, Burusco, 

and Fuentes-González (2005) discuss the construction and features 

of interval type-2 fuzzy implications based on known type-1 fuzzy 

implications. The authors propose methods for construction of in- 

ternal type-2 fuzzy implications from continuous T-norms for in- 

terval type-2 fuzzy numbers (denoted as [ l, u ], where l and u are 

lower and upper limits of the fuzzy set) as: 

• Łukasiewicz implication: 

I L ( [ a, b] , [ c, d] ) 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

[ min { (1 − a + c) , (1 − b + d) } , 
(1 − b + d) ] , a > c and b > d 

[1 − a + c, 1] , a > c and � d 
[1 , 1] , a � c and � d 
[1 − b + d, 1 − b + d] , a � c and b > d 

(1) 

• Brouwer–Gödel implication 

I BG ( [ a, b] , [ c, d] ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

[ c, d] , a > c and b > d 
[ c, 1] , a > c and b � d 
[1 , 1] , a � c and b � d 
[ d , d ] , a � c and b > d 

(2) 

• Kleene-Dienes implication 

I KD ( [ a, b] , [ c, d] ) = [ max { (1 − b) , c} , max { (1 − a ) , d} ] . (3) 

In similar way we construct an interval type-2 S -implication 

from the probabilistic T-conorm (dual to the product T-norm): 

• Reichenbach implication: 

I R ( [ a, b] , [ c, d] ) = [1 − b + bc, 1 − a + ad] . (4) 

3. IT2 neuro-fuzzy system with implication-based inference 

mechanism 

Interval type-2 neuro-fuzzy system with implication-based in- 

ference mechanism is a multiple input single output (MISO) sys- 

tem. Fuzzy rule base is a crucial part of the system. Each fuzzy rule 

is an interval type-2 fuzzy logical implication. The value of the rule 

is a value of fuzzy implication of premise and consequence. 

Rule base L contains fuzzy rules l (fuzzy implications) 

l : x is a � y is b , (5) 

where x = [ x 1 , x 2 , . . . , x D ] 
T and y are linguistic variables, a and b are 

fuzzy linguistic terms. The squiggle arrow ( �) stands for an interval 

type-2 fuzzy implication. 

3.1. Premise 

The premise is built with a Gaussian function. That has two 

main advantages: (1) Membership to a fuzzy set with a Gaussian 

function is never zero. It prevents from a situation when a data 

item is not recognized by any rule. (2) A Gaussian function is dif- 

ferentiable in its whole domain. That enables gradient optimisa- 

tion. 

The rule’s premise denoted by a (cf. Eq. (5) ) is built with an 

interval type-2 Gaussian fuzzy set A with uncertain fuzziness s 

in D -dimensional space. For each dimension d the set A is de- 

scribed with an interval whose limits are Gaussian membership 

functions: 

μ
d 
( x d ) = exp 

(
− ( x d − v d ) 2 

2 s 2 
d 

)
, (6) 
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