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Neuro-fuzzy systems have been proved to be an efficient tool for modelling real life systems. They are
precise and have ability to generalise knowledge from presented data. Neuro-fuzzy systems use fuzzy sets
- most commonly type-1 fuzzy sets. Type-2 fuzzy sets model uncertainties better than type-1 fuzzy sets
because of their fuzzy membership function. Unfortunately computational complexity of type reduction
in general type-2 systems is high enough to hinder their practical application. This burden can be allevi-
ated by application of interval type-2 fuzzy sets. The paper presents an interval type-2 neuro-fuzzy sys-
tem with interval type-2 fuzzy sets both in premises (Gaussian interval type-2 fuzzy sets with uncertain
fuzziness) and consequences (trapezoid interval type-2 fuzzy set). The inference mechanism is based on
the interval type-2 fuzzy tukasiewicz, Reichenbach, Kleene-Dienes, or Brouwer-Godel implications. The
paper is accompanied by numerical examples. The system can elaborate models with lower error rate
than type-1 neuro-fuzzy system with implication-based inference mechanism. The system outperforms
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some known type-2 neuro-fuzzy systems.
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1. Introduction

Neuro-fuzzy systems have been proved to be an efficient tool
for modelling real life systems. They are precise and have ability
to generalise knowledge from presented data. Their important ad-
vantage is interpretability of created models. Some kinds of neuro-
fuzzy systems have been proved to be universal approximators
that satisfy the Stone-Weierstrass theorem (Kosko, 1994). Neuro-
fuzzy systems use fuzzy sets to handle vagueness. Mendel and John
(2002) list noise and uncertainty of data among main sources of
uncertainties in fuzzy systems with type-1 fuzzy sets. The mem-
bership function of type-1 fuzzy sets has strictly crisp values. That
deteriorates the ability to represent noisy or uncertain data. Type-
2 fuzzy sets (Zadeh, 1975) model better such uncertainties because
of their fuzzy membership function.

Type-1 and type-2 fuzzy systems share the same architecture,
they have four main components: fuzzifier, inference engine with a
rule base, and output processor. In type-2 fuzzy systems the output
processor has two tasks: type-reduction and defuzzification. Type
reduction is the main cause of high computation burden of the
type-2 fuzzy systems. It is their main disadvantage and can be mit-
igated by application of interval type-2 (IT2) fuzzy sets. An interval
type-2 fuzzy set is a kind of type-2 fuzzy set. A secondary mem-
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bership function of an interval type-2 (IT2) fuzzy sets can have
only two values: 0 or 1. A system is called an interval type-2 fuzzy
system when it has interval type-2 sets in some part (mostly in
rule premises).

Interval type-2 neuro-fuzzy systems have been profoundly the-
oretically analysed by Liang and Mendel (2000), Karnik, Mendel,
and Liang (1999), and Mendel and Rajati (2014). These papers
present the theory and design patterns. Mendel (2004) pro-
vides mathematical formulae for steepest-descent parameter tun-
ing of type-2 fuzzy systems with a Karnik-Mendel type reducer.
The Karnik-Mendel algorithm (Karnik & Mendel, 2001) is consis-
tent with an extension principle. Unfortunately this complicates
the theoretical analysis and implementation of systems. To avoid
this Wu and Mendel (2002), Nie and Tan (2008), Du and Ying
(2010) formulate type-reducers in a closed-form formulae. These
solutions do not satisfy the requirements of the fuzzy theory, but
are easier to analyse than the Karnik-Mendel algorithm. Neuro-
fuzzy systems can be ordered starting with type-1 (T1) through
interval type-2 (IT2) to general type-2 systems. This sequence
presents both increase in ability to handle uncertainties and com-
putational burden. Computational complexity of type reduction in
general type-2 systems is high enough to hinder their practical ap-
plication. Interval type-2 systems have lower computational over-
head than general type-2 fuzzy systems. They can better handle
uncertainties and can model more complex surfaces than type-1
systems with similar number of rules. An interval type-2 fuzzy sys-
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tem with the KM type reducer cannot be implemented by a type-1
fuzzy system using the same rule base (Wu, 2012).

There have been proposed many interval type-2 neuro-fuzzy
systems. Most systems have interval type-2 fuzzy sets only in
premises. The DIT2LIFR-IP system (Juang & Chen, 2013) uses in-
terval type-2 sets in premises and zero-order TSK interval type-
2 consequences (interval constants). The initial rule base is gen-
erated by a self-splitting clustering algorithm in the input-output
space. Aliasghary, Eksin, Guzelkaya, and Kumbasar (2015) describe
an interval type-2 fuzzy system with diamond-shaped type-2 fuzzy
sets in premises and singletons in consequences and Nie-Tan type
reduction. Melin, Mendoza, and Castillo (2010) present an inter-
val type-2 fuzzy inference system with interval fuzzy constants in
consequences. Starczewski and Rutkowski (2003) propose a type-
2 neuro-fuzzy system with interval fuzzy membership grades in
rule antecedents and intervals in consequents. Chen and Chang
(2011a) apply interval type-2 Gaussian fuzzy sets with fuzzy cores
in premises for sparse fuzzy rule-based system. Juang and Tsao
(2008a) propose a self-evolving interval type-2 fuzzy neural net-
work with online structure and parameter learning. The premises
of the rules are built with interval type-2 fuzzy sets with uncer-
tain means. The consequences follow a TSK pattern. The rules are
generated with an online clustering method.

Non interval type-2 fuzzy systems are not as popular as interval
type-2 systems. One of the examples may be a system with type-2
fuzzy set in premises (with triangular secondary membership func-
tion) and Mamdani type consequences (Starczewski, Scherer, Kory-
tkowski, & Nowicki, 2008).

Tuning of (interval) type-2 neuro-fuzzy system is a challenging
task in spite of wide research (Starczewski et al., 2008). Many tech-
niques are applied, eg: gradient descent and the rule-ordered re-
cursive least squares algorithm (Juang & Chen, 2013), hybrid back-
propagation (Castro, Castillo, Melin, & Rodriguez-Diaz, 2009), ge-
netic algorithm (Park & Lee, 2013), backpropagation and AdaBoost
algorithms (Starczewski et al., 2008).

A fuzzy IF-THEN rule is a kind of fuzzy implication. Fuzzy im-
plications have been deeply analysed from mathematical point of
view. In the proposed system is an implication-based (Dubois &
Prade, 1996) fuzzy inference system where fuzzy rules are evalu-
ated as fuzzy implication. This approach is also called an implica-
tive or deductive approach (Stépnicka & Baets, 2013).

The novelty of this paper is a neuro-fuzzy system with two fea-
tures: (1) it is an interval type-2 neuro-fuzzy system (with IT2 sets
both in premises and consequences of rules) with (2) implication-
based inference mechanism. To the best of our knowledge this is
the first attempt at creation of an interval type-2 (IT2) fuzzy sys-
tem with an implication-based inference mechanism and IT2 fuzzy
sets both in premises and consequences of the rules.

Our system is an extension of the ANNBFIS (Artificial Neu-
ral Network Based Fuzzy Inference System) system (Czogata &
Leski, 2000). This type-1 system has been proved to be precise
and fast in calculations and has many applications and modifica-
tions as e-insensitive learning (Leski, 2003), rough-fuzzy paradigm
(Siminski, 2015), deterministic annealing optimisation (Czabanski,
2006), subspace approach (Siminski, 2017), hybrid system with
SVM (Siminski, 2014a; 2014b), incomplete data mining (Siminski,
2016a), and inversion of neuro-fuzzy system (Siminski, 2016b).

The paper is organized as follows: Section 2 describes the inter-
val type-2 fuzzy implications. Section 3 describes the proposed in-
terval type-2 neuro-fuzzy system with implication-based inference
mechanism. Section 4 shortly presents the creation of rules from
train data. Section 5 describes datasets and experiments. Finally
Section 6 summarizes the paper. The calculation of derivatives is
moved to Appendix to keep the text clearer.

2. Interval type-2 implication

The paper describes an interval type-2 neuro-fuzzy system with
implication-based inference mechanism (IT2NFSIB). Each rule in
rule base is a fuzzy interval type-2 implication. Alcalde, Burusco,
and Fuentes-Gonzalez (2005) discuss the construction and features
of interval type-2 fuzzy implications based on known type-1 fuzzy
implications. The authors propose methods for construction of in-
ternal type-2 fuzzy implications from continuous T-norms for in-
terval type-2 fuzzy numbers (denoted as [l, u], where | and u are
lower and upper limits of the fuzzy set) as:

o Lukasiewicz implication:

Ii([a, b], [c.d])
[min{(1 —a+c), (1 -b+d)},

(1-b+4d)], a>cand b>d
={[1-a+c1] a>cand <d (1)
[1,1], a<cand <d

[1-b+d,1-b+d],

o Brouwer-Godel implication

a<cand b>d

[c.d], a>candb>d
1. db<d

Igc([a, b], [c.d]) = ﬁ 1]] Ziﬁiﬁdbga ?)
[d,d], a<candb>d

e Kleene-Dienes implication
Ip([a. b]. [c. d]) = [max{(1 — b), ¢}, max{(1 - a), d}]. 3)

In similar way we construct an interval type-2 S-implication
from the probabilistic T-conorm (dual to the product T-norm):

e Reichenbach implication:
Ir(la,bl,[c,d]) =[1=b+bc,1—a+ ad]. (4)

3. IT2 neuro-fuzzy system with implication-based inference
mechanism

Interval type-2 neuro-fuzzy system with implication-based in-
ference mechanism is a multiple input single output (MISO) sys-
tem. Fuzzy rule base is a crucial part of the system. Each fuzzy rule
is an interval type-2 fuzzy logical implication. The value of the rule
is a value of fuzzy implication of premise and consequence.

Rule base LL contains fuzzy rules I (fuzzy implications)

l:xisa~ yisb, (5)

where X = [x1, X5, ..., xp|T and y are linguistic variables, a and b are
fuzzy linguistic terms. The squiggle arrow (~) stands for an interval
type-2 fuzzy implication.

3.1. Premise

The premise is built with a Gaussian function. That has two
main advantages: (1) Membership to a fuzzy set with a Gaussian
function is never zero. It prevents from a situation when a data
item is not recognized by any rule. (2) A Gaussian function is dif-
ferentiable in its whole domain. That enables gradient optimisa-
tion.

The rule’s premise denoted by a (cf. Eq. (5)) is built with an
interval type-2 Gaussian fuzzy set A with uncertain fuzziness s
in D-dimensional space. For each dimension d the set A is de-
scribed with an interval whose limits are Gaussian membership
functions:

2
My (Xq) = exp (—(Xd_ud)> (6)

2
25;
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