
Expert Systems With Applications 71 (2017) 125–137 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

Automated reasoning based user interface 

Paweł Kapła ́nski a , b , Alessandro Seganti a , ∗, Krzysztof Cie ́sli ́nski a , Aleksandra Chrabrowa a , 
Iwona Ługowska 

c 

a Cognitum, Warsaw, Poland 
b Gdansk University of Technology, Gdansk, Poland 
c Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology in Warsaw, Warsaw, Poland 

a r t i c l e i n f o 

Article history: 

Received 29 April 2016 

Revised 20 November 2016 

Accepted 22 November 2016 

Available online 23 November 2016 

Keywords: 

Model view controller 

Reasoning 

Semantic web 

OWL/RDF 

Model- driven engineering 

Decision support system 

User interface 

a b s t r a c t 

Motivation : The ability to directly trace how requirements are implemented in a software system is cru- 

cial in domains that require a high level of trust (e.g. medicine, law, crisis management). This paper 

describes an approach that allows a high level of traceability to be achieved with model-driven engi- 

neering supported by automated reasoning. The paper gives an introduction to the novel, automated user 

interface synthesis in which a set of requirements is automatically translated into a working application. 

It is presented as a generalization of the current state of the art model-driven approaches both from the 

conceptual perspective as well as the concrete implementation is discussed together with its advantages 

like the alignment of business logic with the application and ease of adaptability. It also presents how 

a high level of traceability can be obtained if runtime support of automated reasoning over models is 

applied. 

Results : We have defined the Automated Reasoning-Based User Interface (ARBUI) approach and imple- 

mented a framework for application programming that follows our definition. The framework, called 

Semantic MVC, is based on model-driven engineering principles enhanced with W3C standards for the 

semantic web. We will present the general architecture and main ideas underlying our approach and 

framework. Finally, we will present a practical application of the Semantic MVC that we created in the 

medical domain as a Clinical Decision Support System for GIST cancer in cooperation with the Maria 

Sklodowska-Curie Memorial Cancer Center and Institute of Oncology in Warsaw. The discussed expert 

system allows the expert to directly modify the executable knowledge on the fly, making the overall 

system cost effective. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The development and maintenance of User Interfaces (UI) is an 

expensive process that is crucial for most of the businesses. Fur- 

thermore, with the spread of new interaction techniques such as 

touch or vocal input makes the implementation of a modern sys- 

tem UI becomes a critical part of the application lifecycle. More- 

over, the ability to directly trace how the requirements map to 

the software implementation is crucial for domains that require a 

high-level traceability (e.g. medicine, law, crisis management). Fur- 

thermore, all modern system should be simple not only to create 

but also to modify following many change-requests. 

∗ Corresponding author. 

E-mail addresses: pawel.kaplanski@cognitum.eu (P. Kapła ́nski), 

a.seganti@cognitum.eu (A. Seganti), k.cieslinski@cognitum.eu (K. Cie ́sli ́nski), 

a.klimek@cognitum.eu (A. Chrabrowa), iwonalugowska@coi.waw.pl (I. Ługowska). 

Model-Driven Engineering (MDE) answers to these questions. If 

we see a software system as a realization of an abstract model, 

then MDE can be understood as the way to transform the abstract 

model to the actual implementation of the system. 

In this article we present, developed by us, Automatic Reason- 

ing Based User Interface (ARBUI) approach together with its imple- 

mentation: the Semantic MVC. We show how we implemented the 

ARBUI approach and we give an example of a practical use where 

the Semantic MVC framework has been useful: the Clinical Deci- 

sion Support System for Gist Cancer (GIST-CDSS). 

1.1. Methodology 

Selected research methodology combines Literature Review and 

Pilot Study with Action Research (AR), that is intended to ex- 

plore improvements of the specific process. AR is a cycle of actions 

(Susman & Evered, 1978) presented in Fig. 1 . 

http://dx.doi.org/10.1016/j.eswa.2016.11.033 

0957-4174/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.eswa.2016.11.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.11.033&domain=pdf
mailto:pawel.kaplanski@cognitum.eu
mailto:a.seganti@cognitum.eu
mailto:k.cieslinski@cognitum.eu
mailto:a.klimek@cognitum.eu
mailto:iwonalugowska@coi.waw.pl
http://dx.doi.org/10.1016/j.eswa.2016.11.033


126 P. Kapła ́nski et al. / Expert Systems With Applications 71 (2017) 125–137 

Fig. 1. Action Research Cycle. 

Fig. 2. Knowledge and functionality involved in the use of CDSSs to support 

evidence-based medicine (after Sim et al., 2001 ). 

We followed all the steps of AR and in this article we present 

results of our research. 

Diagnosis. The diagnosed problem lies in the implementation of 

specific Clinical Decision Support System for Gist Cancer (GIST- 

CDSS) as a part of a pilot study devoted to Gastrointestinal Stro- 

mal Tumors (GIST). Published in literature, systematically devel- 

oped statements designed to assist medical practitioners and pa- 

tients with decisions about appropriate health care for specific 

clinical circumstances ( Field & Lohr, 1990 ) are known as Clinical 

Practice Guidelines. Because they are very formal, the automation 

of a decision support can be implemented, and the computer can 

make use of patients’ clinical data, follow its own algorithm, and 

present the information relevant to the current clinical situation 

( Stahl, Rouse, Ko, & Niland, 2004 ). In other words, basing on the 

guidelines automated deductive reasoning tools helps a therapist 

to provide evidence-based diagnosis(4) that is logically followed 

by a (6) therapy (see Fig. 2 ). Moreover, clinical guidelines are being 

updated each causing cost-prone maintainability issue of the CDSS. 

Action Planning. To address the problem, we performed Literature 

Review (see Section 3 ) searching for common UI practices. We cre- 

ated a conceptual model of UI infrastructure (see Section 2 ), that 

helped us to understand major differences between existing UI ar- 

chitectures. 

Fig. 3. An agent with its internal state. 

Action Taking. Review of the literature led to the conclusion that 

we need to generalize existing architectures, resulting in the devel- 

opment of ARBUI architecture (see Section 4 ). The aforementioned 

conceptual model allowed us to prove that ARBUI cannot be re- 

duced to any of existing architectures. 

Evaluating. We implemented ARBUI architecture (see Section 6 ) 

and ultimately deployed it as a GIST-CDSS. 

Specifying Learning. Discussion and lessons learned are presented 

in Section 7 . 

2. Conceptual model of user interface 

This section presents a conceptual model of User Interface (UI) 

that helped us focus on the main differences between different 

types of UI architectures, ultimately proving that ARBUI approach 

is a generalization of currently available, related, state of the art 

approaches. 

Let’s consider a reactive agent as a general model of a com- 

puter program. It can maintain its state Woolridge and Wooldridge 

(2001) via an internal stand-alone data structure, and interact with 

its environment that in our case is the user of UI ( Fig. 3 ). The per- 

ception of an agent is realized by its see function, that forwards 

the percept to the next function changing the internal state of the 

agent. The agent control loop is defined in the following way: 

1. Start with the initial internal state s ← s 0 . 

2. Observe the environment state e generated by the user with UI 

input function e ← input ( i ), and generate a percept p ← see ( e ). 

3. Update the internal state via the next function s ← next ( s, p ). 

4. Select an action via the action function a ← action ( s ), and dis- 

play an output of UI back to the environment (the user) o ← 

output ( a ). 

5. GOTO 2. 

We can represent the control loop as a pair of dynamic equa- 

tions (1) , where the symbol: ← −
user represents the interaction of the 

user with the given agent. 

s t+1 = next(s t , see (input(i t )) 

o t+1 = out put (act ion (s t+1 ))) 

i t+1 
← −
user o t+1 

(1) 

Let’s define two functions: (a) control that combines next, see 

and input , and (b) view combining action and output in the follow- 

ing ways (2) : 

next ( s t , see ( input ( i t ) ) ) = cont rol ( s t , i t ) 

output ( acti on ( s t+1 ) ) = view ( s t+1 ) (2) 



Download English Version:

https://daneshyari.com/en/article/4943531

Download Persian Version:

https://daneshyari.com/article/4943531

Daneshyari.com

https://daneshyari.com/en/article/4943531
https://daneshyari.com/article/4943531
https://daneshyari.com

