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a b s t r a c t 

Using time difference of arrival (TDOA) is one of the two approaches that utilize time delay for acous- 

tic source localization. Combining the obtained TDOAs together with geometrical relationships within 

acoustic components results in a system of hyperbolic equations. Solving these hyperbolic equations is 

not a trivial procedure especially in the case of a large number of microphones. The solution is addi- 

tionally compounded by uncertainties of different backgrounds. The paper investigates the performance 

of neural networks in modelling a hyperbolic positioning problem using a feedforward neural network 

as a representative. For experimental purposes, more than 20 0 0 sound files were recorded by 8 spa- 

tially disposed microphones, for as many arbitrarily chosen acoustic source positions. The samples were 

corrupted by high level correlated noise and reverberation. Using cross-correlation, with previous signal 

pre-processing, TDOAs were evaluated for every pair of microphones. On the basis of the obtained TDOAs 

and accurate sound source positions, the neural network was trained to perform sound source localiza- 

tion. The performance was examined using a large number of samples in terms of different acoustic sen- 

sors setups, network configurations and training parameters. The experiment provided useful guidelines 

for the practical implementation of feedforward neural networks in the near-field acoustic localization. 

The procedure does not require substantial knowledge of signal processing and that is why it is suitable 

for a broad range of users. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Acoustic source localization is the determination of sound 

source position, relative to some reference frame, by using 

sound signals. It is used in diverse military, industrial, scien- 

tific, office, and home applications for speech signal processing 

( Clifford, Rathborn, & Bull, 1981 ), intelligent living environments 

( Principi, Droghini, Squartini, Olivetti, & Piazza, 2016 ), maintenance 

and structural monitoring systems ( Costiner et al., 2014 ), sonar 

( Bokhari & Khan, 2012 ), surveillance systems ( Vozáriková, Pleva, 

Juhár, & Cižmár, 2011 ) or to locate sources of artillery fire ( Calhoun, 

Showen, Beldock, Manderville, & Dunham, 2012 ). The process is 

performed passively or actively and can take place in liquids, gases 

and solids. Passive systems use sound signals coming from acous- 

tic sources to locate them. On the other hand, active localization is 

used for locating targets that are not necessarily acoustic sources. 
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Sound pulses are sent and their echoes, reflected from objects, are 

used for localization ( Bokhari & Khan, 2012 ). 

Many implementations of acoustic localization systems try to 

imitate flexible and integrated sensory functionality of animals 

( Nikoli ́c, Kim, & Allen, 2012 ). People and animals are able to point 

at the horizontal direction that sound is coming from using slightly 

different signals that arrive at each ear ( Lin, Xiao-Yan, Xu, & Zhen- 

Yang, 2015 ). For the vertical direction, features of the sound spec- 

trum, produced by a sound reflector (pinna) ( Macpherson & Sabin, 

2013 ), are used as the auditory cue. The localization ability can 

be established by the process of learning through the repetition of 

movement. Biologically inspired, audio localization systems can be 

realized by only one, two or by array of microphones ( Argentieri, 

Danes, & Soueres, 2015; Belloch, Gonzalez, Vidal, & Cobos, 2015; 

Seewald, Gonzaga, Veronez, Minotto, & Jung, 2014 ). 

Audio localization can be applied on different scales, which 

mostly depends on the sound power level. Localization of light- 

ing phenomena, volcano explosion ( Rowell et al., 2014 ) or air- 

crafts ( Martín, Genescà, Romeu, & Clot, 2016 ), for instance, is per- 

formed from dozens of kilometers, while in the case of small 

precision mechanisms or material structure investigation localiza- 

tion is performed on the millimeter scale ( Grabowski et al., 2016 ; 
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Tan, Zhu, Su, Wang, Wu & Gu, 2016 ). The error is determined by 

the geometry of the microphone array, accuracy of the microphone 

setup, uncertainties in microphones locations, lack of synchroniza- 

tion within microphones, inexact propagation delays, bandwidth of 

emitted pulses, presence of noise sources, numerical round off er- 

rors, anisotropy, obstacles in the propagation path and other terms. 

Representative methods of acoustic localization are intensity 

difference, beam forming and using time delay estimation (TDE). 

These methods primarily differ in physical variables utilized for the 

sound source localization. The first method uses the phenomenon 

of decreasing the sound source energy as it propagates through the 

medium ( Wu, Wang, Dai, & Tong, 2014 ). Beam-forming uses a col- 

lection of signals, from the array of microphones, for computing a 

correlation matrix, which is thereafter used for the determination 

of sound source direction ( Radcliffe, Naguib, & Humphreys, 2014 ). 

The procedure, known as spatial filtering, is based on subspace- 

theory. The last approach uses the time delay of arrival (TOA), for 

the case of far-field localization, or the time difference of arrival 

(TDOA), in the case of near-field localization, collected at different 

spatial positions. Obtained delays are used, together with the ge- 

ometrical positions between acoustic components, for estimating 

the emitter position. Near-field localization is also known as hyper- 

bolic localization because it requires solving hyperbolic equations 

( Park, Jeon, & Kim, 2014 ). The complexity of calculations needed 

for achieving accurate localization increases dramatically with the 

size of the sensor array ( Belloch et al., 2015; Seewald et al., 2014 ), 

yet the problem can be mitigated by doing some of the processing 

on the sensor platform. 

The experiment presented in this paper dealt with near field 

3D acoustic localization, motivated by the possibility of locating 

flying objects, such as insects or drones, in the near field of the 

microphone array on the basis of acoustic signals they emit. It 

was performed under extremely bad conditions reflected in high 

disturbances and reverberation. Neural networks were employed 

for evaluating acoustic source location because of their high speed 

during exploitation and possibility to model some of the uncertain- 

ties in the experimental setup (microphone positions, locations of 

parabolic reflectors, lack of synchronization within microphones). 

The performance of neural networks was investigated using a ba- 

sic, feedforward, neural network, as a representative, in terms of 

sensor parameters, network configuration and training parameters. 

The results and the optimal solution of the localization problem 

are discussed and presented at the end. 

2. Time difference of arrival (TDOA) 

Sound signals received on two spatially separated audio re- 

ceivers can be expressed by equations 

s i ( t ) = s 0 ( t ) + n i ( t ) (1) 

s j ( t ) = αi s 0 ( t − �t ij ) + n j ( t ) (2) 

where s 0 (t) is the signal of emitter, n i (t) and n j (t) are the uncor- 

related zero-mean Gaussian noise processes, α is the scaled dif- 

ference in amplitude between the two received signals. After dis- 

cretization, the previous equations take the form 

s i [ k ] = s 0 [ k ] + n i [ k ] (3) 

s j [ k ] = αi s 0 [ k − l ] + n j [ k ] (4) 

where k is the time sample index and l is the correlation lag be- 

tween the samples. Time difference of arrival, �t ij , between signals 

is commonly determined using the cross-correlation function 

R ij ( l ) = 

1 

K 

K −1 ∑ 

k=0 

s i [ k ] s j [ k − l ] (5) 

as the argument l that maximizes its value within the range of 

possible lags 

�t ij = 

1 

F s 
arg max 

(
R ij [ l ] 

)
, − T 

2 

≤ l ≤ T 

2 

(6) 

where F s is the sampling frequency and T is the size of the ob- 

servation window. A good approximation of the cross-correlation 

function can be obtained using the inverse discrete Fourier trans- 

formation 

R ij ( l ) ≈
1 

K 

K −1 ∑ 

k=0 

R ij ( f ) e 
j2 πfl

K (7) 

where R ij (f) is the cross-power spectral density (XPSD) 

R ij ( f ) = S i ( f ) S j ( f ) (8) 

Some other TDOA estimation algorithms developed for the pur- 

pose of TDOA estimation are phase transform, maximum likelihood 

estimator, average square difference method, adaptive last mean 

square filter, etc. All of them differ in accuracy and computational 

complexity. 

TDOA estimation in real circumstances is always negatively af- 

fected by disturbances of various backgrounds. The quality of sig- 

nal is measured by the ratio between the original signal amplitude 

and the amplitude of noise. It is usually expressed in decibels 

SNR ( dB ) = 20 log 10 

(
A signal 

A noise 

)
(9) 

If SNR falls below a certain threshold all methods become 

unreliable. For the case of the cross-correlation function it is 

about 13 dB and for the phase transform algorithm about −13.5 dB 

( Dhull, Arya, & Sahu, 2010 ). 

Since computational efforts have limited effect, SNR ratio is im- 

proved using different types of filters. The role of a filter is to sup- 

press the noise while leaving the signal unchanged. The general 

equation of infinitive impulse response (IIR) filters, in the time do- 

main, has the following form 

y [ n ] = 

N ∑ 

k=1 

a k y [ n − k ] + 

M ∑ 

k=0 

b k x [ n − k ] (10) 

Unlike finite impulse response (FIR) filters, the future state of 

IIR filters depends not only on the finite number of previous in- 

puts, but also on the finite number of previous outputs. The trans- 

fer function of IIR filters can be obtained after the z-transformation 

of Eq. (10) 

H ( z ) = 

∑ M 

k=0 b k z 
−k 

1 − ∑ N 
k=1 a k z 

−k 
(11) 

A filter design procedure means searching for suitable transfer 

function coefficients that will provide a filter to meet the specifi- 

cation. For instance, a typical specification of a low-pass filter con- 

sists of the following parameters: 

• [0, ω p ] - pass-band 

• [ ω s , π ] - stop-band 

• [ ω p , ω s ] - transition band 

• 20 log 10 ( 1 + δp ) dB - pass-band ripple (dB) 
• 20log 10 ( δs ) dB - stop-band ripple (dB) 

Graphical representation of these parameters is presented in 

Fig. 1 . Filter design requires considerable knowledge about signal 

processing and frequency response of both signal and noise. For- 

tunately, some filters possess the possibility to adapt the trans- 

fer function according to an optimization algorithm. Implementing 

adaptive filters does not require a priori knowledge of signal and 

noise. 
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