
Expert Systems With Applications 71 (2017) 319–331

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A new weighted pathfinding algorithms to reduce the search time on

grid maps

Zeyad Abd Algfoor a , ∗, Mohd Shahrizal Sunar a , ∗, Afnizanfaizal Abdullah

b

a UTM-IRDA Digital Media Centre, Media and Game Innovation Centre of Excellence, Institute of Human Centred Engineering, Universiti Teknologi Malaysia,

81310 Skudai Johor, Malaysia
b Synthetic Biology Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai Johor, Malaysia

a r t i c l e i n f o

Article history:

Received 11 July 2016

Revised 16 November 2016

Accepted 2 December 2016

Available online 3 December 2016

Keywords:

Pathfinding

JPS, A ∗

Bi-A ∗

Weight techniques

Pathfinding benchmarks maps

a b s t r a c t

Artificial Intelligence (AI) techniques are utilized widely in the field of Expert Systems (ES) - as applied

to robotics, video games self-driving vehicles and so on. Pathfinding algorithms are a class of heuristic

algorithms based on AI techniques which are used in ES as decision making functions for the purpose

of solving problems that would otherwise require human competence or expertise. ES fields that use

pathfinding algorithms and operate in real-time face many challenges: for example time constraints, op-

timality and memory overhead for storing the paths which are found. For these algorithms to work,

appropriate problem-specific maps must be constructed. In relation to this, the uniform-cost grid set-up

is the most appropriate for ES applications. In this method, each node in a graph is represented as a tile,

and the weight “between” tiles is set at a constant value, usually this is set to 1. In the state-of-the-art

heuristic algorithms used with this data structure, multiplying the heuristic function by a weight greater

than one is well-known technique. In this paper, we present three new techniques using various weights

to accelerate heuristic search of grid maps. The first such technique is based on the iteration of a heuris-

tic search algorithm associated with weight-set w . The second technique is based on the length between

the start node and goal node, which is then associated with w . The last technique is based on the travel

cost and is associated with a weight-set α. These techniques are applicable to a wide class of heuristic

search algorithms. Therefore, we implement them, here, within the A

∗, the Bidirectional A

∗ (Bi-A

∗) and

Jump Point Search (JPS) algorithms; thus obtaining a family of new algorithms. Furthermore, it is seen

that the use of these new algorithms results in significant improvements over current search algorithms.

We evaluate them in path-planning benchmarks and show the amended JPS technique’s greater stability,

across weight values, over the other two techniques. However, it is also shown that this technique yields

poor results in terms of cost solution.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The use of pathfinding algorithms represents a key task in many

domains and these algorithms are widely employed in areas such

as artificial intelligence (Atallah & Blanton, 2009), robotics (Algfoor,

Sunar, & Kolivand, 2015), video games (Algfoor et al., 2015),

metabolic pathways (Algfoor, Sunar, Abdullah, & Kolivand, 2016;

Croes, Couche, Wodak, & Van Helden, 2005; Planes & Beasley,

2008), and the resolving of problems relating to vehicular traffic

(Bleiweiss, 20 08; Silver, 20 05). Pathfinding problems are divided

into two major categories, multi-agent and single-agent. The multi-

agent pathfinding (MAPF) problem is a generalization of the single-

agent pathfinding problem. In the multi-agent situation, a number

∗ Corresponding author.

E-mail addresses: zeyadiraq1982@gmail.com (Z.A. Algfoor), shahrizal@utm.my

(M.S. Sunar), afnizanfaizal@utm.my (A. Abdullah).

of agents simultaneously search for their destinations. Pathfinding

algorithms begin exploring the graph from the root node and

continue until a solution is found. In mathematical terms, graphs

are represented as a set of vertices with edges connecting them.

To use and evaluate the performance of pathfinding algorithms,

a suitable environment must be set-up. The most popular and

most widely used method for representing pathfinding envi-

ronments is the ubiquitous undirected uniform-cost grid map

(Harabor, Botea, & others, 2010; Pochter, Zohar, Rosenschein, &

Felner, 2010). Moreover, our focus, in this article, is on single-agent

pathfinding problems, and our aim is to reduce the search space

these have to explore to find an optimal solution.

There have been many techniques which have been suggested

for the solution of pathfinding problems. One of the most pow-

erful and simple techniques that has been proposed is that of

the weighted heuristic search. This technique is extensively used

with heuristic search algorithms. The weighted A

∗ algorithm

http://dx.doi.org/10.1016/j.eswa.2016.12.003

0957-4174/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.eswa.2016.12.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.12.003&domain=pdf
mailto:zeyadiraq1982@gmail.com
mailto:shahrizal@utm.my
mailto:afnizanfaizal@utm.my
http://dx.doi.org/10.1016/j.eswa.2016.12.003

320 Z.A. Algfoor et al. / Expert Systems With Applications 71 (2017) 319–331

(Hart, Nilsson, & Raphael, 1968) is a well-known algorithm for

single-agent search problems. It is based on multiplying the

heuristic function by a constant weight. In the standard A

∗ algo-

rithm, the evaluation function f (s) = g (s) + wh (s) is used to

rank a state which is on the search frontier. Where g (s) is the

cost value incurred to reach s, h (s) is a (heuristic) estimate of

the cost to reach a solution from s , and w is the weight value

(greater than or equal to one). This algorithm, using this weighting

technique, can find the solution much faster than a conventional

A

∗ algorithm. However, a drawback of this technique is that if the

heuristic h is admissible, it will be far from optimal by at most a

factor w in the majority of cases.

There are three types of problems which heuristic search algo-

rithms suffer from: memory overhead, run-time constraints, and

the optimality of solutions. For instance, the A

∗ algorithm requires

a memory allocation which is exponential to the length of the so-

lution path; thus the algorithm may run out of memory before

producing a solution, or it will spend an impractical time gener-

ating, storing and revisiting the stored search information. On the

other hand, if the aim of the algorithm is to find optimal solutions

only, a comprehensive exploration makes sense; consequently the

search space used will be expanded in order to find an optimal so-

lution in a shorter time. In point of fact, this strategy results in in-

stability and is not always practicable. Hence, heuristic algorithms

should pursue at least two objectives simultaneously, run-time

limitation and optimality. These objectives are often in a trade-off

relation, whereby the first biases the agent in favor of attempted

actions, and the second causes the agent to aggressively try to

keep the current quality of solution. Dealing with this trade-off ad-

equately is the key to resolving the problems of these algorithms,

and this depends on the requirements of the field of application.

Based on this observation, we present three new approaches

to reducing the space required for the search, finding optimal

solutions, and furthermore avoiding the inherent intractability

which is present in most artificial intelligence problems. Each

approach has its own equation which generates the values which

are to be multiplied by the result of the heuristic function. The

generated values will represent a bias in the selection of the

next step along the path. The approaches (equations) are asso-

ciated with two constant weight sets. The first two approaches

are associated with weights w > 0 and the other approaches are

associated with weights α ≥ 2. Furthermore, we have implemented

all these approaches within three heuristic search algorithms: A

∗,

Bidirectional A

∗(Sint & de Champeaux, 1977), and the JPS Jump

Point Search (D. D. Harabor, Grastien, & others, 2011). We evaluate

these implementations using standard benchmark maps extracted

from a video-game (Sturtevant, 2012).

The rest of the paper is organized as follows. The next section

describes related work on pathfinding approaches. In Section 3 we

describe the three weighting approaches as implemented within

the A

∗, Bidirectional A

∗ and JPS heuristic algorithms. Section 4

presents our three proposed approaches and in the next section

we describe the mechanism of these approaches. We then visu-

alize these mechanisms in relation to grid maps in Section 6 .

Finally, in Section 8 , we evaluate our algorithms via various con-

vergence rate measurements commonly used in pathfinding. We

then discuss the relevant aspects of the performance of the algo-

rithms we are analyzing. The paper ends with a conclusion and

suggestions for future work.

2. Related work

A number of weighting related techniques have been used to

reduce the time taken to find solution paths. In practical terms,

the time constraints can, fairly easily, be satisfied by the use of

short distances between the start and goal nodes. Thus, the impact

of any weight set can be more clearly seen when long distances

intervene between the initial and the goal states. On the other

hand, of course, when longer distances are involved, the number

of obstacles and the distribution of these obstacles will incur

more time and memory overhead (Cowling et al., 2013; Sturtevant,

2007). It should be noted that most previous work considers the

cost of travelling between any two neighbors nodes to be constant.

With this assumption, in the forward and backward directions the

cost will be 1 and for diagonal movements, the cost value is
√

2 .

The weighted A

∗ (Pohl, 1970) method was one of the first at-

tempts to find a relation between the weightings and the heuristic

term. The best weight values, 1 ≥ w ≥ 0.5, were selected based

on observations associated with the heuristic value. The learning

real-time A

∗ algorithm (LRTA

∗) (Bulitko & Lee, 2006; Shimbo

& Ishida, 2003) was designed taking into account the behavior

and flexibility of the real-time search problem for autonomous

agents. The weight values 2 ≥ w > 0 were selected to deal with

the heuristic value. The drawbacks of the LRTA

∗ algorithm are

excessive exploration and the instability of the solution quality

which is produced. In the same context, the suboptimal solution

online/offline kNNLRTA

∗ algorithm (Bulitko, Björnsson, Sturtevant,

& Lawrence, 2011) utilizes large-scale multi-agent pathfinding

with weight values 1 ≥ w > 0. This latter provides a new concept

in terms of how real-time search agents can learn heuristics. The

drawback of KNNLRTA

∗ is that generating offline databases (as it

does) takes additional time, and game companies do not find this

acceptable. The wLSS-LRTA

∗ and wLRTA

∗-LS algorithms (Rivera,

Baier, & Hernández, 2013) combine two techniques in order to

achieve a more efficient solution cost and total search time. The

weights are incorporated into the lookahead search phase and the

edges of the search graph during the learning phase.

We have noted that the previous work uses a set of weight

values within certain limits based on experimental observations.

This methodology for choosing weights is not sufficient and does

not always provide optimal solutions. The reason for this is that

the value of a certain weight can reduce the search time and give

an optimal solution for some cases, but perhaps not in other cases.

Therefore, we cannot base a weighting approach on a specific

weight value which is always to be multiplied by the heuristic

value. We have also noted that the weight values do not deal with

cost travel value directly and without reference to the heuristic

value. Consequently, we have implemented and tested three new

techniques which generate values which ‘cooperate’ with constant

weight values. Two of these techniques manipulate the heuristic

value, and the other one manipulates the travel cost value.

3. Notation and terminology

In this work, the state space is defined as a quintuple (S, A,

c, s, G), where (S, A) represents the search space in a strongly

connected graph. Set S is a non-empty finite set of states (nodes),

and A represents the set of all available actions (edges) A ⊂ S ×
S − {(s, s) | s ∈ S}. Each edge is labeled with a function relating

to the cost of travel from one node to another C: A → R + , ∀ s ∈

S and a set G ⊂ S of goal states. In this paper, a state space is an

undirected graph where c (s, t) = c (t, s) for any (s, t) ∈ A.

A path is a non-empty sequence and a finite sequence of states

(s0, s1, s2 …); we define the set of (immediate) successors of s

by Succ (s) = {t | (s, t) ∈ A}, where t represents a candidate node.

We calculate the distance between s and t, d (s, t) where d here

denotes the direct distance of the shortest path between s and t,

ignoring obstacles. We assume, in the state space, that there is at

least one path from the non-goal state to the goal state, s ∈ S –

G; the cost of the action of travelling from the initial state to the

goal state is the summation of all successive states along the path.

A heuristic function h: S → [0, ∞) undertakes to approximate the

Download English Version:

https://daneshyari.com/en/article/4943544

Download Persian Version:

https://daneshyari.com/article/4943544

Daneshyari.com

https://daneshyari.com/en/article/4943544
https://daneshyari.com/article/4943544
https://daneshyari.com

