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a b s t r a c t 

Real-time fault detection and isolation are important tasks in process monitoring. A real-time contrasts 

(RTC) control chart converts the process monitoring problem into a real-time classification problem 

and outperforms existing methods. However, the monitoring statistics of the original RTC chart are dis- 

crete; this could make the fault detection ability less efficient. To make monitoring statistics continuous, 

distance-based RTC control charts using support vector machines (SVM) and kernel linear discriminant 

analysis (KLDA) were proposed. Although the distance-based RTC charts outperformed the original RTC 

chart, the distance-based RTC charts have a disadvantage in that it is difficult to analyze the causes of 

faults when using these charts. Therefore, we propose improved RTC control charts using random forests 

with weighted voting. These improved RTC control charts can detect changes more rapidly by making 

monitoring statistics continuous; additionally, they can also analyze the causes of faults in a similar man- 

ner to the original RTC chart. Further, the improved RTC control charts alleviate the class imbalance prob- 

lem by using F-measure, G-mean, and Matthews correlation coefficient (MCC) as performance measures 

to assign proper weights to individual classifiers. Experiments show that the proposed methods outper- 

form the original RTC chart and are more effective than the distance-based RTC charts using SVM and 

KLDA. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Because of technological advances in data collection, the use 

of multivariate statistical process control (MSPC) procedures is 

increasing ( Woodall & Montgomery, 2014 ). Multivariate control 

charts, such as Hotelling’s T 2 chart ( Hotelling, 1947 ), the mul- 

tivariate cumulative sum (MCUSUM) charts ( Crosier, 1988 ), and 

the multivariate exponentially weighted moving average (MEWMA) 

charts ( Lowry, Woodall, Champ, & Rigdon, 1992 ), are typically used 

to detect a process shift when predictor variables are correlated. 

The calculations for the monitoring statistics and control limit 

(CL) of these methods require the assumption that the process 

follows a multivariate normal distribution. In practice, however, 

the normality assumption can be easily violated in many real- 

world applications, and this degrades the performance of control 

charts. 
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To overcome this problem, several recent studies have applied 

machine learning algorithms to MSPC procedures. One-class clas- 

sification (OCC) algorithms were utilized to build a classification 

boundary ( Sukchotrat, Kim, & Tsung, 2010; Sun & Tsung, 2003 ). 

The OCC algorithms generate the classification boundary using only 

phase-I observations. In phase-II, each newly arriving observation 

is classified as on-target when it is included in the classifica- 

tion boundary; otherwise, it is regarded as off-target. Although the 

OCC control charts perform better than traditional MSPC methods, 

phase-II observations are ignored when the classification bound- 

ary of the OCC control charts is constructed. As phase-II observa- 

tions usually have more recent information about current process 

conditions than phase-I observations, the performance of the OCC 

control charts could be less sensitive ( Deng, Runger, & Tuv, 2012 ). 

On the other hand, binary-class classification algorithms could 

also be considered for MSPC procedures. Several methods using 

artificial contrasts were proposed and have been improved ( Hu, 

Runger, & Tuv, 2007; Hwang & Lee, 2015; Hwang, Runger, & Tuv, 

2007 ). In these studies, random artificial data were generated to 

represent the off-target data against the in-control condition. By 

assigning an on-target class label to the phase-I data and an off- 

target class label to the artificial data, a classifier was trained to 

construct a decision boundary. In another approach, several meth- 
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ods making use of both past in-control and out-of-control infor- 

mation were proposed ( Chongfuangprinya, Kim, Park, & Sukchotrat, 

2011; Sukchotrat, Kim, Tsui, & Chen, 2011; Zhang, Tsung, & Zou, 

2015 ). The monitoring statistics and CLs of these methods were 

calculated by the probability that an observation is classified as 

in-control or out-of-control. They used the k-nearest neighbor al- 

gorithm, linear discriminant analysis, and support vector machines 

as classifiers. 

It is important to note that previously explained methods still 

exclude the real-time phase-II data for their CL. In addition, as the 

classifiers in the methods are trained only once ahead of the start 

of phase-II monitoring, their classification boundary is fixed after 

construction. If the off-target condition is not properly represented 

in the artificial contrasts or the past out-of-control data, the clas- 

sifier may lose its fault detection ability because it creates a bi- 

ased decision boundary. To resolve this problem, a real-time con- 

trasts (RTC) control chart was developed ( Deng et al., 2012 ). The 

real-time phase-II data within a window are regarded as contrasts, 

and random forests build a decision boundary using both phase-I 

reference data and real-time observations. This method constantly 

updates the classification boundary whenever new real-time mea- 

surements are available. In other words, the RTC control charts 

convert the process monitoring problem into a real-time classi- 

fication problem. A simulation study showed that the RTC chart 

performs better than the traditional control chart, artificial con- 

trasts method, and change-point detection method based on gen- 

eralized likelihood ratio statistics. Furthermore, the RTC chart has 

advantages in that it not only can be applied to various data types, 

such as categorical data and missing data, but can also analyze the 

causes of faults. 

However, the original RTC chart faces two notable problems. 

First, the monitoring statistics of the original RTC chart have dis- 

crete values because they are calculated using classification accu- 

racy or the probability of correct classification by random forests, 

which are an ensemble of decision trees. It is possible that obser- 

vations with different degrees of abnormality may have equivalent 

monitoring statistic values, and this could make the fault detec- 

tion ability less sensitive. To make monitoring statistics continu- 

ous, distance-based RTC control charts using support vector ma- 

chines (SVMs) ( He, Jiang, & Deng, 2016 ) and kernel linear discrim- 

inant analysis (KLDA) were proposed ( Wei, Huang, Jiang, & Zhao, 

2016 ). Contrary to the original RTC chart, they used the distance 

from the decision boundary as the monitoring statistic, and this 

enabled the distance-based RTC charts to outperform the original 

RTC chart. However, the distance-based RTC charts do not have the 

merits of the original RTC chart. They cannot be applied to var- 

ious data types and analyze the causes of faults. To make mon- 

itoring statistics continuous, weighted voting can be used. Sev- 

eral studies were carried out in the area of weighted voting based 

on random forests ( Guenter & Bunke, 2004; Robnik-Sikonja, 2004; 

Tsymbal, Pechenizkiy, & Cunningham, 2006 ) and compared with 

each other ( Tripoliti, Fotiadis, & Manis, 2013 ). However, they did 

not consider the class imbalance problem. Although weighted vot- 

ing methods considering class imbalance were proposed ( Bhowan, 

Johnston, Zhang, & Yao, 2013; Chawla & Sylvester, 2007 ), they used 

a genetic algorithm, which is not suitable for RTC charts owing to 

its computation time. 

The original RTC method still suffers from the class imbal- 

ance problem. Deng et al. (2012) utilized a stratified sampling 

method to address the class imbalance problem, but there is 

room for improvement. Most prominently, balanced random forests 

(BRF) and weighted random forests (WRF), both based on ran- 

dom forests, were proposed to deal with class imbalance ( Chen, 

Liaw, & Breiman, 2004 ). BRF is identical to the stratified sampling 

method except that it changes vote cutoffs for the final prediction; 

WRF assigns further weights to the minority class, thereby more 

heavily punishing misclassification of the minority class. However, 

these methods need additional parameters, which are the cutoff

and weight. These hyperparameters have to be tuned experimen- 

tally to improve the performance; this results in a computational 

burden for the RTC methods. 

The following are the main contributions of this paper. We 

propose improved RTC control charts using random forests with 

weighted voting. These improved RTC control charts not only de- 

tect a shift more rapidly by making monitoring statistics continu- 

ous but can also analyze the origins of faults. Moreover, the im- 

proved RTC control charts relieve the class imbalance problem. We 

compare the proposed method to the existing RTC methods in dif- 

ferent experiments. 

The remainder of the paper is organized as follows. In Section 2 , 

we give an overview of the conventional RTC control chart. Section 

3 introduces the proposed methods, and the procedure for fault 

isolation is discussed. In Section 4 , experimental results for the 

proposed methods are presented, including a performance com- 

parison with the existing RTC charts using simulated data. Finally, 

Section 5 contains our concluding remarks and suggestions on fur- 

ther research opportunities. 

2. Real-time contrasts (RTC) control chart 

In this section, we describe the original RTC control chart in 

which random forests are used to calculate the monitoring statis- 

tics. We introduce the RTC method first, followed by random 

forests. 

2.1. Real-time contrasts (RTC) method 

RTC control charts convert the process monitoring problem into 

a real-time classification problem. In the RTC method ( Deng et al., 

2012 ), the phase-I data S 0 , which are from the in-control condi- 

tion, are referred to as reference data. Multivariate measurements 

are acquired from the process at each time t and denoted by x t . 

The measurements in a moving window with window size N w 

are denoted by S w 

( t ). S w 

( t ) contains the most recent N w 

mea- 

surements and is updated whenever a new measurement arrives, 

i.e., S w 

(t) = { x t−N w +1 , · · · , x t−1 , x t } . In addition, S w 

( t ) is used as 

the RTC against the reference data. For supervised learning, the 

reference data S 0 and RTC data S w 

( t ) are labeled with two classes, 

Class 0 and Class 1, respectively. 

The RTC method builds a classification boundary between S 0 
and constantly arriving S w 

( t ). The classification accuracies and 

probabilities of correct classification contain information about the 

process condition. When there is no shift in the real-time process, 

it is hard to distinguish one class from the other; the accuracy 

and probability of correct classification will be low. On the con- 

trary, when the real-time process is out of control, the accuracy 

and probability of correct classification will be high. Although both 

the accuracy and classification probability can be used as the mon- 

itoring statistics for the MSPC procedures, the probability of correct 

classification detects the shift more rapidly than accuracy does in 

most situations ( Deng et al., 2012; Wei et al., 2016 ). 

Let ˆ p k ( x i | t ) denote the predicted probability that a measure- 

ment x i is classified as k at time t ( k = 0 , 1 ). As both S 0 and S w 

( t ) 

include multiple observations, we need to calculate the average 

of S 0 and S w 

( t ) to summarize the classification results and utilize 

them as the monitoring statistics. For x i ∈ S 0 , 

p ( S 0 , t ) = 

∑ 

x i ∈ S 0 ˆ p 0 ( x i | t ) 
N 0 

(1) 

and for x i ∈ S w 

( t ), 

p ( S w 

, t ) = 

∑ 

x i ∈ S w ( t ) ˆ p 1 ( x i | t ) 
N w 

(2) 
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