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a b s t r a c t 

We introduce from first principles an analysis of the information content of multivariate distributions as 

information sources. Specifically, we generalize a balance equation and a visualization device, the Entropy 

Triangle, for multivariate distributions and find notable differences with similar analyses done on joint 

distributions as models of information channels. 

As an example application, we extend a framework for the analysis of classifiers to also encompass the 

analysis of data sets. With such tools we analyze a handful of UCI machine learning task to start address- 

ing the question of how well do datasets convey the information they are supposed to capture about the 

phenomena they stand for. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction and motivation 

In this paper we introduce an information-theoretic perspective 

into the problem of characterizing the datasets in machine learning 

tasks, and obtain several tools, both theoretical and practical, to 

explore such problem. 

Information-theory was founded by Shannon in his two-part 

seminal paper ( Shannon, 1948a; 1948b ) to provide a mathematical 

background to the transmission of information in the presence of 

noise. The last 60 years of engineering practice have revealed that 

this setting is far broader than initially envisaged, and many prob- 

lems, both theoretical and applied, can be characterized as “re- 

lating to the transmission of information”, that is, in information- 

theoretical terms (see, e.g. MacKay, 2003; Brillouin, 1962 ). 

In particular, a strong current to use information-theoretic prin- 

ciples and heuristics in machine learning ( Principe, 2010 ) and sta- 

tistical inference ( Jaynes, 1996 , Chapter 11), and several methods 

for evaluation and analysis based on entropic measures with di- 

verse applications have been recently published ( Chen, Jin, Qiu, 

& Chen, 2014; Hempelmann, Sakoglu, Gurupur, & Jampana, 2016; 

Rödder, Brenner, & Kulmann, 2014; Valverde-Albacete & Peláez- 

Moreno, 2010; 2014; Zhou, Tian, Xu, Yu, & Wu, 2013 ). 

As early as McGill (1954) , there emerged an interest in better 

understanding how the transmission of information in the multi- 

variate setting —that is, among multiple variables—compares to the 
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bivariate setting used by Shannon for variables X and Y . For the 

purpose at hand consider the scheme of Fig. 1 (a) conceptualizing 

the supervised machine learning task of multi-class classification, 

cast in an information-theoretic setting. There is a set of m realiza- 

tions of a random vector X of (observed) variables or features paired 

with as many realizations of a class variable K . The set of pairs of 

instances { (k i , x i ) } 1 ≤i ≤m 

will be called a dataset . For unsupervised 

tasks, we typically disregard K . 

The feature instances X = x i may be further transformed to ob- 

tain instances of a random vector Y , through a tranformation func- 

tion f : X → Y , x i �→ y i = f ( x i ) with desired characteristics, e.g. sta- 

tistical independence among the transformed features. For super- 

vised classification, classifier induction is the subtask of inducing a 

function k : Y → K, y i �→ ̂

 k i = k ( y i ) that tries to estimate the origi- 

nal K but can only obtain the estimate ˆ K . 

For an end-to-end measure of the effectiveness of this proce- 

dure of estimating ̂ K from K as per the box in Fig. 1 (b), a Shannon- 

type equation on the entropies around a bivariate joint distri- 

bution was introduced in Valverde-Albacete and Peláez-Moreno 

(2010) and later refined in Valverde-Albacete and Peláez-Moreno 

(2014) (see Section 2.1 ). It was named the balance equation and it 

leads to a new kind of exploratory graph for entropies: a ternary 

or de Finetti diagram of entropies, also called the entropy triangle 

(ET) (see Section 2.2 ). Both tools have been used to evaluate multi- 

class classifiers ( Valverde-Albacete, de Albornoz, & Peláez-Moreno, 

2013 ) using the joint distribution of results implicit in the confu- 

sion matrix over the classified instances as evaluated on the train 

and test data ( Murphy, 2012; Theodoridis & Koutroumbas, 2006 ) 

(see Section 2.3 ). 
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(c) Conceptual measurement schemes for the information content of sources

Fig. 1. Schematic representation of a multi-class classification task and measure- 

ment schemes for information-theoretic quantities. 
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Fig. 2. Examples of systems susceptible of analysis with the techniques dis- 

cussed in the paper . (a) Single-input single-output system studied with previous 

entropy triangles, and (b) opaque multivariate source, (c) multivariate source com- 

ing from an observation process, to be studied with the techniques presented in 

this paper. 

Again, such tools allow us to analyze single-input single-output 

processing blocks like that in Fig. 2 (a). 

But in this paper, we would like to investigate whether there 

are analogous results for multivariate stochastic sources of in- 

formation whose block diagram fragment in focus is that of 

Fig. 2 (b). For that purpose, let X = { X i | 1 ≤ i ≤ n } be a set of dis- 

crete random variables with joint multivariate distribution P 
X 
( x ) = 

P X 1 ... X n (x 1 . . . x n ) — where x = x 1 . . . x n is a tuple of n elements—with 

marginals P X i (x i ) = 

∑ 

j � = i P X ( x ) . 
We would also like to study the related procedure of observing 

a random variable K through an observation process whose result 

is the random vector X , as depicted in Fig. 2 (c), which is precisely 

the setting of supervised classification. With this goal in mind, in 

supervised tasks we may select one of the variables to represent 

a class index K in this (categorical or discrete) setting. When the 

support of K has more than two values |supp( K )| ≥ 2 we call this 

setting multiclass classification ; if | supp (K) | = 2 , we call it (binary) 

classification . When this is the model of the data (as in Section 4.3 ) 

we will suppose that the classification variable K is actually ad- 

joined to variable vector X and it is interpreted as the underlying 

process captured by the observation data. 

In the following, we first review in Section 2 the theory and 

methods behind the balance equation and the entropy triangle, in- 

cluding a discussion of the issues that need to be addressed for 

their multivariate generalization, and ending with a set of prob- 

lems that have to be solved in order to do so. In Section 3 we 

present our main theoretical contribution, the generalizations of 

the balance equation and the entropy triangle for multivariate dis- 

tributions, and in Section 4 we introduce examples of uses for 

these tools for the exploratory analysis of machine learning tasks, 

both supervised and unsupervised. We end with a brief discussion 

of alternate representation mechanisms for entropy balances, the 

uses of such tools and some conclusions. 

2. Methods and tools 

2.1. The joint entropy balance of two variables 

The tools we propose are based on an often overlooked decom- 

position of the joint entropy of two random variables ( Valverde- 

Albacete & Peláez-Moreno, 2010 ). Fig. 3 depicts this decomposition 

showing the three crucial regions: 

• The divergence with respect to uniformity , �H P X ·P Y , between the 

joint distribution where P X and P Y are independent and the 

uniform distributions U X and U Y with the same cardinality of 

events as P X and P Y . 

�H P X ·P Y = H U X ·U Y − H P X ·P Y . 

• The mutual information , MI P XY 
, quantifies the force of the 

stochastic binding between P X and P Y . 

MI P XY 
= H P X ·P Y − H P XY 

• The variation of information , V I P XY 
, embodies the residual en- 

tropy, not used in binding the variables. 

V I P XY 
= H P X| Y + H P Y | X 

Each of these quantities provide intuitions into the behavior of 

P X , P Y and P XY used to advantage in applications (cfr. Section 2.3 ), 

and we would like to reproduce them in a multivariate setting for 

applications like feature filtering ( Brown, Pocock, Zhao, & Luján, 

2012 ) or multi-label classification ( Gibaja & Ventura, 2015 ). 

Note that all of these quantities are positive. In fact from 

the previous decomposition the following balance equation is ev- 

ident, 

H U X ·U Y = �H P X ·P Y + 2 · MI P XY 
+ V I P XY 

0 ≤ �H P X ·P Y , MI P XY 
, V I P XY 

≤ H U X ·U Y 
(1) 

where the bounds are easily obtained from distributional consider- 

ations ( Valverde-Albacete & Peláez-Moreno, 2010 ). 

2.2. From the balance equation to the joint entropy triangle 

If we normalize (1) by the overall entropy H U X ·U Y we obtain 

1 = �′ H P X ·P Y + 2 · MI ′ P XY 
+ V I ′ P XY 

0 ≤ �′ H P X ·P Y , MI ′ P XY 
, V I ′ P XY 

≤ 1 

(2) 

Eq. (2) is the 2-simplex in normalized �H 

′ 
P X ·P Y × 2 MI ′ P XY 

×
VI ′ P XY 

space. Each joint distribution P XY can be characterized by its 

joint entropy proportions, or entropic composition ( Aitchison, 1982; 

Pawlowsky-Glahn, Egozcue, & Tolosana-Delgado, 2015 ) F (P XY ) = 

[�H 

′ 
P XY 

, 2 · MI ′ P XY 
, VI ′ P XY 

] . Its projection onto the plane with director 

vector (1, 1, 1) is its de Finetti (entropy) diagram , represented in 

Fig. 4 which shows as an equilateral triangle, hence the alternative 

name of entropy triangle . 

Therefore, every binary distribution shows as a point in the trian- 

gle and the position in the triangle entails qualities of the distribution: 

• The lower side of the triangle is the geometric locus of distribu- 

tions with independent marginals: if P XY = P X · P Y then F (P XY ) = 

[ ·, 0 , ·] . 
• The left side is the geometric locus of distributions with uni- 

form marginals. If P X = U X and P Y = U Y then F (P XY ) = [0 , ·, ·] . 
• Finally, the right-hand side is the locus of distributions with 

identical marginals: if P X = P Y —that is, H P X 
= H P Y 

= MI P XY 
—then 

F (P XY ) = [ ·, ·, 0] . 
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