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a b s t r a c t 

In the evidential reasoning approach of decision theory, different evidence weights can generate different 

combined results. Consequently, evidence weights can significantly influence solutions. In terms of the 

“psychology of economic man,” decision-makers may tend to seek similar pieces of evidence to support 

their own evidence and thereby form alliances. In this paper, we extend the concept of evidential rea- 

soning (ER) to evidential reasoning based on alliances (ERBA) to obtain the weights of evidence. In the 

main concept of ERBA, pieces of evidence that are easy for decision-makers to negotiate are classified in 

the same group or “alliance.” On the other hand, if the pieces of evidence are not easy to negotiate, they 

are classified in different alliances. In this study, two negotiation optimization models were developed 

to provide relative importance weights based on intra- and inter-alliance evidence features. The proposed 

models enable weighted evidence to be combined using the ER rule. Experimental results showed that 

the proposed approach is rational and effective. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Evidence theory ( Dempster, 1967; Shafer, 1976 ) was originally 

developed by Arthur P. Dempster and later extended and refined 

by Glenn Shafer. It is thus sometimes referred to as the Dempster–

Shafer (DS) theory of evidence. DS theory is a powerful and flexible 

mathematical tool for addressing imprecise and uncertain informa- 

tion. Hence, it has been employed in areas such as expert systems 

( Beynon, Cosker, & Marshall, 2001 ), uncertainty reasoning ( Jones, 

Lowe, & Harrison, 2002 ), pattern classification ( Denoeux & Mas- 

son, 2004 ), fault diagnosis and detection ( Fan & Zuo, 2006 ), infor- 

mation fusion ( Telmoudi & Chakhar, 2004 ), multiple attribute de- 

cision analysis ( Xu, Yang, & Wang, 2006 ), image processing ( Huber, 

2001 ), risk analysis ( Deng, Sadiq, Jiang, & Tesfamariam, 2011 ), e- 

commerce security ( Zhang, Deng, Wei, & Deng, 2012 ), financial 

applications ( Dymova, Sevastianov, & Kaczmarek, 2012; Dymova, 

Sevastjanov, & Kaczmarek, 2016 ), and water distribution systems 

( Bazargan-Lari, 2014 ). 

Meanwhile, decision theory, or the theory of choice, is the study 

of the reasoning behind a decision-maker’s choice. It is used to 

solve problems involving selection from a finite number of choices. 
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Decision theory literature has an extensive history. However, many 

studies published in this area, such as works on the analytic hier- 

archy process (AHP), assume complete information in the decision- 

making process. That is, the methods assume that decision-makers 

are fully aware of their specific preferences. In cases in which data 

for assessing alternatives against criteria are partially or completely 

unavailable, or the decision-maker’s knowledge of an alternative 

evaluation is insufficient, the decision-makers are more likely to 

use uncertain assessment information. 

DS theory, on the other hand, is well suited to handling un- 

certainty. It is particularly useful for dealing with uncertain sub- 

jective judgments when multiple pieces of evidence must be si- 

multaneously considered. An evidential reasoning (ER) approach 

based on both decision theory and DS theory was thus proposed 

by Yang and Singh (1994 ). In the past two decades, the origi- 

nal ER approach has been extensively developed to solve multi- 

attribute decision making (MADM) problems with uncertainties, 

including fuzzy evaluation grades, interval evaluation grades, fuzzy 

belief structures, interval belief degrees, dynamic belief degrees, 

partially ordered preferences under uncertainty, and unknown at- 

tribute weights in various values and preference judgments ( Fu & 

Chin, 2014; Guo, Yang, Chin, Wang, & Liu, 2009; Hu, Si, & Yang, 

2010; Huynh, Nakamori, Ho, & Murai, 2006 ; Wang, Yang, Xu, & 

Chin, 20 06 ; Yang, 20 01; Yang & Xu, 2002a; Yang & Xu, 2002b; 

Yang, Wang, Xu, & Chin, 2006 ). 
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Furthermore, the ER approach and its extensions have 

been widely applied to MADM problems in business perfor- 

mance assessment ( Yang, Dale, & Siow, 2001 ), pre-qualification 

of construction contractors ( Sönmez, Yang, Graham, & Holt, 

2002 ), environmental impact assessment ( Wang, Yang, & Xu, 

2006 ), organizational self-assessment ( Siow, Yang, & Dale, 2001 ), 

safety analysis ( Liu, Yang, Wang, SII, & Wang, 2004; Wang 

& Yang, 2001 ), bridge condition assessment ( Wang & El- 

hag, 2007 ), behavior prediction ( Zhou, Hu, Xu, Yang, & Zhou, 

2010 ), fault prediction ( Si, Hu, Yang, & Zhang, 2011 ), risk 

analysis ( Tang, Yang, Chin, Wong, & Liu, 2011 ), job offering 

( Mahmud, Rahman, & Hossain, 2013 ), software selection ( Chin 

& Fu, 2014 ), and group decision analysis ( Fu, Huhns, & Yang, 

2014 ). 

In the above ER approaches, the assessment information for 

each criterion is regarded as a piece of evidence; the crite- 

rion weight provides the evidence weight. The residual support 

remains uncommitted because the evidence weight is assigned 

to any singleton proposition and the universal set proposition, 

which contains all elements of a proposition. This specific assign- 

ment can differentiate between ignorance and residual support, 

while reflecting the relative importance of other evidence. As Xu 

(2009) contended, this specificity enables the ER approach to solve 

counterintuitive problems in which conflicting pieces of evidence 

are combined using Dempster’s rule. 

However, most existing ER approaches have made significant 

advancements in solving MADM problems with different decision 

scenarios based on the original ER algorithm. In this algorithm, it is 

assumed that local ignorance exists in none of the evidence. While 

this assumption is reasonable when solving MADM problems, it is 

difficult to apply to other domains. 

To expand the range of ER applications, Yang and Xu (2013) re- 

linquished this assumption and generalized the ER algorithm into 

a new weighted ER rule that accounts for both global and local ig- 

norance. In addition, they further expanded the ER rule to combine 

multiple pieces of evidence according to their weights and degrees 

of reliability. These advancements have considerably enriched ER 

theory. It is said that the importance of a piece of evidence reflects 

a decision-maker’s preferences over the evidence. The importance 

is thus subjective; it depends on the agent making the judgment 

when using the evidence. 

Nevertheless, none of the above ER approaches explain how to 

determine the relative importance of the evidence weight. More- 

over, the individual behavior of the decision-maker is not consid- 

ered. Because the results are interest-driven, it is impossible for the 

decision-maker to have an unbiased, isolated perspective regarding 

the evidence. In certain decision-making situations, the determin- 

ing agent seeks similar pieces of evidence to support their own ev- 

idence, thereby forming an alliance of evidence. We therefore pro- 

pose the “evidential reasoning” approach (ERBA), which is based 

on alliances. 

The remainder of this paper is organized as follows. 

Section 2 introduces the relevant concepts of DS theory, evi- 

dential reasoning, and the pignistic probability distance. Section 

3 describes the importance of evidence weight. Section 4 details 

the development of the ERBA approach, and Section 5 analyzes 

the rationality of the proposed approach. Section 6 concludes the 

paper. 

2. Preliminaries 

In this section, we introduce some prior knowledge regarding 

DS theory, the evidential reasoning algorithm, and the pignistic 

probability distance, which is used as the basis for later discus- 

sions. 

2.1. DS theory 

DS theory is viewed as a generalization of probability theory 

that can handle multiple possible propositions, e.g., sets of propo- 

sitions. Let � = { H 1 , · · · , H N } be a collectively exhaustive and mu- 

tually exclusive set of propositions. It is called the frame of dis- 

cernment. Three important functions exist in DS theory: the basic 

probability assignment function (bpa or m ), belief function ( Bel ), and 

plausibility function ( Pl ). These functions are defined below. 

Definition 1. ( Dempster, 1967 ) . A basic belief assignment (bba) 

(also called a belief structure) is a function, m : 2 � → [0 , 1] (called 

the basic probability assignment (bpa) in Shafer’s original defini- 

tion), which satisfies { 

m (φ) = 0 , ∑ 

A ⊆�

m (A ) = 1(0 ≤ m (A ) ≤ 1) , 

where φ is an empty set, A is a subset of �, and 2 � is the 

power set of �, which consists of all the subsets of �, i.e., 

2 � = { φ, { H 1 } , · · · , { H N } , { H 1 , H 2 } , · · · , { H 1 , H N } , · · · , �} . The func- 

tion m ( A ) is the bpa of A . It measures the belief explicitly assigned 

to A and represents how strongly the evidence supports A . Each 

subset A is called a focal element of m . All related focal elements 

are collectively called the body of evidence. 

Definition 2. ( Dempster, 1967 ) . Both the belief function and plau- 

sibility function can be derived from the basic probability assign- 

ment, m ( A ), as 

Bel(A ) = 

∑ 

B ⊆A 
m (B ) and P l(A ) = 

∑ 

B ∩ A � = φ m (B ) 

In this definition, Bel ( A ) represents the sum of the basic prob- 

ability masses assigned to A , whereas Pl ( A ) represents the sum of 

possible basic probability masses that could be assigned to A . 

The core concept of DS theory is Dempster’s rule, by which 

pieces of evidence from different sources are combined or aggre- 

gated. This rule assumes that information sources are independent. 

It thus uses the so-called orthogonal sum to combine multiple be- 

lief structures as m 1 �m 2 ����m n , where � represents the combina- 

tion operator. With multiple bbas, m 1 , m 2 , ���, m n , Dempster’s rule 

is defined as 

[ m 1 � m 2 · · · � m n ](θ ) 

= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

0 , θ = φ, ∑ 

A 1 ∩ A 2 ···∩ A n = θ, A 1 , A 2 , ··· , A n ⊆�

m 1 ( A 1 ) m 2 ( A 2 ) · · · m n ( A n ) ∑ 

A 1 ∩ A 2 ···∩ A n � = φ, A 1 , A 2 , ··· , A n ⊆�

m 1 ( A 1 ) m 2 ( A 2 ) · · · m n ( A n ) 
, θ � = φ, 

under the condition that 
∑ 

A 1 ∩ A 2 ···∩ A n � = φ
m 1 ( A 1 ) m 2 ( A 2 ) · · · m n ( A n ) � = 0 . 

2.2. Evidential reasoning rule 

Yang and Xu (2013) extended DS theory and proposed a refined 

ER rule that proceeds along the following steps. First, the origi- 

nal evidence is transformed into modified evidence using relative 

weights as follows: ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

M i (θ ) = w i m i (θ ) , i = 1 , 2 , · · · , n ; θ ⊂ �, 

M i (�) = M i (�) + 

˜ M i (�) = 1 − w i 

∑ 

θ⊂�

m i (θ ) , i = 1 , 2 , · · · , n, ˜ M i (�) = w i (1 − ∑ 

θ⊂�

m i (θ ) ) , i = 1 , 2 , · · · , n, 

M i (�) = 1 − w i , i = 1 , 2 , · · · , n. 

(1) 

Note that the probability mass assigned to the whole set, M i ( �), 

which denotes the degree of ignorance, is split into two parts: 
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