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a b s t r a c t 

In the framework of regression trees, this paper provides a recursive partitioning methodology to deal 

with a non-standard response variable. Specifically, either multivalued numerical or modal response of 

the type histogram will be considered. These data are known as symbolic data, which special cases are 

classical data, imprecise data, conjunctive data as well as fuzzy data. In spite of pre-processing data in 

order to deal with standard regression tree methodology, this paper provides, as main contribution, a 

definition of the impurity measure and of the splitting criterion allowing for building the regression tree 

for multivalued numerical response variable. We analyze and evaluate the performance of our proposal, 

using simulated data as well as a real-world case studies. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Starting from the pioneer work of Morgan and Sonquist (1963) , 

regression trees have been extensively developed in the CART 

(Classification and Regression Trees) methodology by Breiman, 

Friedman, Olshen, and Stone (1984) and justified within the Sta- 

tistical Learning Paradigm outlined by Hastie, Friedman, and Tib- 

shirani (2001) and defined by Vladimir and Vapnik (1995) . Main 

issue of the tree-based approach to a regression problem is to 

deal with complex data, namely non linear dependence relations 

between a response numerical variable and a set of predictors 

of different typology (qualitative and/or quantitative), distribution 

free assumption, non parametric estimation, huge data or very 

large sample size. CART approach to regression trees consists into 

two main procedures: first, the definition of a recursive parti- 

tioning method to build up an exploratory binary tree to under- 

stand the dependence relationships among the variables; second, 

the identification of the suitable decision tree based rule for as- 

signing a response value to new cases for that only the predictors 

measurements are known. So far, proposals in literature have fo- 

cus the attention on alternative splitting criteria ( Galimberti, Pil- 

lati, & Soffritti, 2007; Mola & Siciliano, 1992; Siciliano & Mola, 

1996; 20 0 0 ), assessment of decision rules ( Breiman, 1996; Fre- 

und & Schapire, 1997; Vezzoli, 2011 ), strategy of analysis based on 

the complementary use of regression trees with parametric models 
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( Siciliano, Aria, & D’Ambrosio, 2008 ), the application of regression 

trees to special fields such data-editing ( D’Ambrosio, Aria, & Sicil- 

iano, 2012 ), etc. All these proposals have always considered stan- 

dard data, either categorical or numerical for the predictors and 

obviously numerical for the response. Nowadays, a lot of interest 

has received nonstandard data types, such as fuzzy data, imprecise 

data, conjunctive data, which can be also related to a more general 

definition of symbolic data ( Bock & Diday, 20 0 0 ). 

Literature on symbolic data has included several contributions 

involving also tree-based methods ( Limam, Diday, & Winsberg, 

2003; Mballo & Diday, 2005 ), other than other approaches such 

as factor analysis ( Cazes, Chouakria, Diday, & Schektman, 1997 ), re- 

gression analysis ( de Carvalho, Neto, & Tenorio, 2004; Neto, de Car- 

valho, & Freire, 2005 ), clustering methods ( de Carvalho, Brito, & 

Bock, 2006; Cozza, Guarracino, Maddalena, & Baroni, 2011; Irpino 

& Verde, 2008; Irpino, Verde, & De Carvalho, 2014 ). As a matter 

of fact, tree-based methods have been used with interval data as 

predictors. Main idea has been to convert interval data into a stan- 

dard data type upon a suitable pre-processing. The pre-processing 

consists either in taking either the lower or the upper bound of 

each interval, as well as the mean value of each interval, such to 

proceed with a standard regression tree growing procedure. With 

respect to CART the main difference was to consider as impurity 

measure the Kolmogorov–Smirnov measure. 

One of the first works dealing with regression trees for multi- 

variate response variable was introduced by Segal (1992) , in which 

longitudinal data were used as multivariate response variable. 

Regression trees with probability density function as a response 

variable have been introduced in the framework of functional data 

analysis. In this case splitting criteria are based on the sum of 
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dissimilarities between the densities or deviations of the densities 

from their mean ( Lane & Robinson, 2011; Nerini & Ghattas, 2007 ). 

More recently, other authors have moved into another direction 

of research, that is to define suitable tree-based methods dealing 

directly with symbolic data upon suitable definition of splitting 

criteria to grow classification trees where predictors are symbolic 

data and/or functional data ( Siciliano, Aria, D’Ambrosio, & Cozza, 

2016 ). 

This paper provides a recursive partitioning methodology when 

the response variable can be either multivalued numerical or 

modal response of the type histogram. As main result, we will 

define the impurity measure and the splitting criterion allowing 

for building the so-called regression tree for multivalued numeri- 

cal response. The remainder of the paper is organized as follows: 

in Section 2 we briefly recall the regression trees. In Section 3 we 

introduce the framework of symbolic data. Section 4 is devoted 

to introduce and explain our proposal. Section 5 is dedicated to 

both a simulation study and applications on real problems. In 

Section 6 we close the paper with some concluding remarks. 

2. Standard regression trees 

Data can be hierarchically organized in a connected and ori- 

ented graph, the so-called tree, characterized by a set of linked 

nodes, in which any two nodes are connected by exactly one sim- 

ple path, the starting-node is the root and the end-nodes are the 

leaves also known as terminal nodes , all the others are internal 

nodes . Main idea is to associate to the root node the starting sam- 

ple of cases such that the tree structure provides a partition of the 

starting sample into H groups corresponding to the total number 

of leaves of the tree. 

In CART framework, binary regression trees can be built up as a 

recursive binary partitioning of n cases into two subgroups which 

are internally homogeneous and externally heterogeneous with re- 

spect to the numerical response variable. In other words, at any in- 

ternal node of the tree, a splitting criterion is based on the search 

of that split that generates the most different descendant nodes in 

terms of mean (or median) value of the response variable. Predic- 

tors play the role to generate the set of candidate splitting vari- 

ables to be considered in the splitting criterion. Specifically, cat- 

egorical predictors with m categories generate 2 m −1 − 1 splitting 

variables if not ordered and m − 1 if ordered; numerical predictors 

with m distinct values also generate m − 1 splitting variables. The 

splitting criterion is defined as the maximum decrease of impu- 

rity when passing from a parent node to the two children nodes, 

upon a suitable definition of the impurity measure (i.e., the varia- 

tion or the deviance). To each leave of the tree is assigned as label 

the mean value of the response distribution within the terminal 

node. In this way, it is possible to understand the dependence re- 

lationships of the response variable on the predictors by analyz- 

ing the different tree paths starting from the root node until the 

different leaves. Regression trees can be also considered for pre- 

diction of a new object for that only the predictors’ measurements 

are known. This object can slide down the tree until falling into 

a terminal node with a given label value assigned. The quality of 

this prediction can be evaluated in terms of the mean squared er- 

ror estimates considering either the learning or training sample, or 

the test sample, alternatively cross-validation. CART adopts the fol- 

lowing strategy: first, the recursive partitioning provides the max- 

imum expanded tree such that leaves cannot be further split (i.e., 

threshold value to be fixed on the percentage of cases within the 

leave, alternatively on the decrease of impurity and so on); sec- 

ond, the pruning procedure provides to identify a set of nested 

decision trees upon removing at turn the weakest link on the ba- 

sis of the trade off between the increase in error prediction and 

the decrease in the tree size complexity; third, a selection of the 

most accurate decision tree to be considered for prediction on new 

cases on the basis of an independent test sample of cases as well 

as on cross-validation sample. More recent methods improve the 

accuracy of the decision tree based rules by ensemble methods 

( Breiman, 1996; Freund & Schapire, 1997 ). 

3. Symbolic data 

Symbolic data were defined by Diday (1993) and formally 

definitively formalized by Billard and Diday (2003) . The data de- 

scriptions of the units are called symbolic when they are more 

complex than the standard ones due to the fact that they con- 

tain internal variation and are structured. Symbolic data need more 

complex data tables called symbolic data tables because a cell of 

such data table does not necessarily contain as usual, a single 

quantitative or categorical values. 

A classical value or realization for the random variable Y j , j = 

1 , . . . , p, on individual i = 1 , . . . , n, will be denoted by x ij if it is a 

classical variable, and Y j (i ) = ξi j if it is a symbolic variable ( Billard 

& Diday, 2003 ). 

Symbolic data are a hypercube in the p -dimensional space or 

Cartesian product of distributions in which a generic variable is so 

defined: 

Let Y j the domain of Y j . 

1. Interval-valued variable is a variable which assumes two real 

values for each observation. These values represent the bound- 

aries of an interval. 

ξi j = [ a, b] where a and b are two numerical values with a < b . 

2. Multivalued variable is one whose possible value takes one or 

more values from the list of the value in its domain Y. 

The complete list of possible values in Y is finite so that ϒ j = 

{ a, b, c, d, e } where i.e. ξi j = { a, b} . A multivalued variable is cat- 

egorical when its domain is defined by qualitative attributes on 

the contrary it is called quantitative multivalued variable when 

Y is composed by numerical values. 

3. Modal variable or multi-state variable is a variable with fre- 

quency, probability, or weight attached to each specific value 

in the data. 

ξi j = { U j (i ) , πi j } for i ∈ � where π ij are non-negative measures 

or a distribution on the domain Y j of possible observation val- 

ues and U j ( i ) ⊆Y j is the support of π ij . More generally, ξ ij may 

be a histogram, an empirical distribution function, a probability 

distribution, a model, or so on. 

Following this definition, classical data can be treated as a spe- 

cial case of symbolic data in which ξi j = [ a, a ] where a is an quali- 

tative or quantitative attribute. 

4. Distance-based impurity criterion 

In this paper we consider the case in which the response vari- 

able can be either multivalued numerical or modal variable of 

the type histogram. The impurity criterion must assure that each 

split returns children nodes purest than their father node. What 

we need is a numerical evaluation of the comparison of such 

symbolic variables. We need a distance-based impurity criterion 

( D’Ambrosio & Heiser, 2016; De’ath, 2002 ). 

4.1. The earth mover distance 

Roughly speaking, the Earth Mover Distance ( Rubner, Tomasi, & 

Guibas, 1998 ) can be assumed as the minimal amount of work 

needed to transport earth or mass from one position (properly 

spread in space) to the other 
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