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a b s t r a c t 

In this paper an immuno-inspired algorithm is proposed to generate sequences of data close to the ideal 

white noise. The motivation to propose the algorithm is that in many cases there is a necessity to gener- 

ate white noises with a small number of samples, and the pseudo-random generators may fail to perform 

this task. The proposed algorithm is based on the maximization of the whiteness criterion, clearly defined 

in this paper, and is different from other immuno-inspired algorithms because it presents an automatic 

regulation of the suppression threshold, that is an important control variable of the algorithm. This fea- 

ture allows the proposed algorithm to reach good results, even for different sizes of candidate solutions. 

To test the proposed algorithm, the results obtained from it are compared to the results obtained from 

a known pseudo-random generator and it is shown that the solutions obtained with the proposed al- 

gorithm are better, for time and frequency domain, if the number of samples required is limited. It is 

also shown that the proposed algorithm consumes a time comparable to the pseudo-random generator 

to reach solutions that are better than the ones obtained with that kind of algorithm. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

A time series, or a stochastic process, is a family of random 

variables indexed by a scalar that represents the time. In the dis- 

cussion developed in this paper, this scalar is discrete and is de- 

noted by k . To belong to the same stochastic process, the random 

variables for all different k must be defined in the same probability 

triple { �, F , P } , where � is the sample space, F is a σ -algebra de- 

fined on the subsets of � and P is a probability measure. More 

details about those hypothesis and definitions can be found in 

standard statistics books such as ( Mortensen, 1987 ) or ( Papoulis & 

Pillai, 2002 ). A sequence of numbers sampled along the time that 

satisfies the statistical rules that describe a specific stochastic pro- 

cess is defined as a realization of that stochastic process. 

A special kind of stochastic process is defined as white noise. 

By definition, the white noise is a stochastic process that follows a 

Gaussian distribution with zero mean and a positive definite vari- 

ance. In this process, each sample is uncorrelated to any other 

sample. This time domain characteristic results in a flat spectrum 

in the frequency domain. Thus, the name of this time series comes 
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from the analogy between its frequency domain characteristic and 

the white light, that is a light which spectrum has the same inten- 

sity for all frequencies. 

In stochastic calculus context, the white noise is defined as the 

derivative of the Wiener process, that describes the position of a 

particle subject to Brownian motion. It can be proved that the ideal 

white noise is not realizable ( Kloeden & Platen, 1992 ), that is, it is 

impossible to create an exact realization of that stochastic process. 

Although not realizable, the white noise plays an extremely im- 

portant role in stochastic process theory ( Kloeden & Platen, 1992 ), 

( Oksendal, 2003 ), system identification ( Ljung, 1999 ), ( Katayama, 

2005 ), signal processing ( Oppenheim & Schafer, 2010 ), time series 

analysis ( Durbin & Koopman, 2001 ) and many other theories, since 

this signal can be used as the input to filters, resulting in out- 

puts with any desired set of auto-covariance matrices, that are di- 

rectly related to the spectrum ( Box, Jenkins, & Reinsel, 2008 ). The 

output auto-covariance matrices depend only on filter parameters. 

From this point of view, the white noise can be considered as the 

stochastic equivalent to the deterministic impulse function, from 

which any deterministic signal can be generated if this function is 

applied to an appropriate dynamical system. 

The problem of finding a model that generates a sequence of 

data with any desired set of auto-covariance matrices (or any spec- 

trum) from a white noise input is defined as time series realization 

problem ( Anderson, Moore, & Loo, 1969 ), ( Gevers & Kailath, 1973 ). 
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In this problem, the desired sequence of data may be unidimen- 

sional or multidimensional. In the first case, the methods based 

on auto-regressive models or frequency response are adequate ( Box 

et al., 2008 ), ( Young, 2011 ). In the second case, it is convenient to 

work with state space models, that can be easily generalized for 

any dimension. There are many approaches to solve the time se- 

ries realization problem in state space, such as the one proposed 

by Faurre, that is based on solving a linear matrix in equation 

that comes from the desired state space model and the desired 

set of auto-covariances ( Faurre, 1967 ), the one proposed by Aoki, 

that uses the desired auto-covariance data to determine a Riccati 

equation, from which the solution can be obtained ( Aoki, 1987 ), 

the one proposed by Akaike, that is based on canonical correlations 

( Akaike, 1974 ), the one proposed by Durbin and Koopman, based 

on maximum likelihood estimation ( Durbin & Koopman, 2001 ) and 

many others. Although those methods are based on different ap- 

proaches, all have in common that the results are the model ma- 

trices and the variance for a white noise to be given as input to the 

model to generate realizations of the desired time series. Normally, 

in those cases, the input white noise is multivariate, what means 

that insted of a Gaussian sequence of uncorrelated numbers, the 

desired signal is a Gaussian sequence of uncorrelated vectors. 

From the discussion above, the importance of a method to gen- 

erate good approximations for unidimensional and multidimen- 

sional white noise realizations is clear. Usually, if the number of 

desired samples is in an order of magnitude of 10 3 or greater, 

pseudo-random generators as the one proposed in Marsaglia and 

Tsang (1984) are good sources of approximations for white noise 

realizations. If this hypothesis is not verified, the sequences ob- 

tained from pseudo random generators are not good approxima- 

tions for the white noise, as demonstrated in Giesbrecht and Bot- 

tura (2011) . In that reference, an immuno-inspired method is pro- 

posed to generate white noise realizations. This method is based 

on transforming the white noise generation into an optimization 

problem, and solving it with an immuno-inspired algorithm. It was 

shown that the new method produced white noise realizations 

with better quality than the ones produced by a pseudo-random 

generator. The sequences of data created with the two different 

approaches were used as inputs to a model determined with the 

Aoki method ( Aoki, 1987 ) and the outputs were closer to the de- 

sired time series when the white noise obtained with the immuno- 

inspired method was applied. 

In this article, a new implementation of the algorithm intro- 

duced in Giesbrecht and Bottura (2011) is presented. This new ap- 

proach differs from the original one by the introduction of an au- 

tomatic procedure to regulate a crucial control parameter of the 

algorithm, that is the suppression threshold. Also, in this paper a 

whiteness criterion is clearly stated. This criterion is useful to de- 

termine how close any sequence of data is from the ideal white 

noise and can be used as a measure of the quality of the signals 

created by any white noise generation method. 

The algorithm proposed in this paper was tested and the re- 

sults were compared to the pseudo-random generator proposed in 

Marsaglia and Tsang (1984) for many dimensions and quantity of 

samples. This comparison allows to conclude about the limits of 

the number of samples and the dimension where a method is su- 

perior to the other. The spectra of the realizations obtained with 

the proposed method and the ones obtained with normal pseudo- 

random generators are also compared. 

This paper is structured as follows: In the next section the 

mathematical definitions of the unidimensional and the multidi- 

mensional white noises in time and frequency domains are pre- 

sented. The difficulties to generate a finite length white noise 

realization are also discussed. From the definitions, the white- 

ness criterion is introduced. In the third section the immuno- 

inspired algorithms are discussed. This class of algorithms presents 

interesting characteristics to solve optimization problems and is 

used as basis to the algorithm presented in this paper. In the 

fourth section the proposed algorithm is introduced. In the fifth 

section the results of the tests executed to evaluate the quality of 

the solutions obtained with the algorithm are presented. Finally in 

the sixth section the conclusions of this work are shown, closing 

the article. 

2. White noise 

In this section the definitions of unidimensional and multidi- 

mensional discrete white noises in time and frequency domains 

are presented. In the sequence, the difficulties related to the gen- 

eration of finite length white noises are discussed. To finish this 

section, a whiteness criterion is introduced. This criterion is used 

to evaluate which one of two different signals is closer to the ideal 

white noise definition and is the key to understand the method 

presented in this paper. 

2.1. Unidimensional discrete white noise in time domain 

Let x (k ) ∈ R , (k ∈ Z | − ∞ < k < ∞ ) , be an infinite realization of 

an unidimensional discrete time series. Its auto-covariances �x ( t ) 

are defined as: 

�x (t) = E[(x (k ) − μx )(x (k + t) − μx )] , t ∈ Z (1) 

where E [ •] is the expectation operator, t is an integer defined as 

lag and μx ∈ R is the mean of the time series realization x ( k ) de- 

fined as: 

μx = E[ x (k )] = lim 

N→∞ 

1 

2 N + 1 

N ∑ 

k = −N 

x (k ) (2) 

By definition, a realization of an ideal infinite unidimensional 

Gaussian white noise e ( k ) is a sequence of numbers that follows 

a normal distribution, has zero mean and presents a set of auto- 

covariances that satisfies the following relation: 

�e (t) = 

{
σ 2 t = 0 

0 t � = 0 

, t ∈ Z (3) 

where �e ( t ) denotes the auto-covariance of the signal e ( k ) for the 

lag t and σ 2 ∈ R is its variance. 

2.2. Multidimensional discrete white noise in time domain 

In the multidimensional time series analysis, it is convenient to 

define a white noise with dimension greater than one. This def- 

inition is similar to the unidimensional one but, instead of using 

unidimensional samples defined in the space R , the samples are 

defined in the R 

l space. Consequently, the mean becomes a R 

l vec- 

tor and the auto-covariances become R 

lxl matrices. 

Let x (k ) ∈ R 

l , (k ∈ Z | − ∞ < k < ∞ ) , be an infinite realization of 

an l -dimensional discrete time series. Its auto-covariance matrices 

�x ( t ) are defined as: 

�x (t) = E[(x (k ) − μx )(x (k + t) − μx ) 
T ] , t ∈ Z (4) 

where E [ •] is the expectation operator, •T is the matrix transpose 

operator, t is an integer defined as lag and μx ∈ R 

l is the mean of 

the time series realization x ( k ) defined similarly as in the unidi- 

mensional case. 

A realization of an ideal l -dimensional Gaussian white noise e ( k ) 

is a sequence of l -dimensional vectors that follows a l -dimensional 

normal distribution, has zero mean and presents a set of auto- 

covariances that satisfies the following relation: 

�e (t) = 

{
�2 t = 0 

0 lXl t � = 0 

t ∈ Z (5) 
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