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a b s t r a c t 

Bayesian max-margin models have shown superiority in various practical applications, such as text cat- 

egorization, collaborative prediction, social network link prediction and crowdsourcing, and they conjoin 

the flexibility of Bayesian modeling and predictive strengths of max-margin learning. However, Monte 

Carlo sampling for these models still remains challenging, especially for applications that involve large- 

scale datasets. In this paper, we present the stochastic subgradient Hamiltonian Monte Carlo (HMC) meth- 

ods, which are easy to implement and computationally efficient. We show the approximate detailed bal- 

ance property of subgradient HMC which reveals a natural and validated generalization of the ordinary 

HMC. Furthermore, we investigate the variants that use stochastic subsampling and thermostats for bet- 

ter scalability and mixing. Using stochastic subgradient Markov Chain Monte Carlo (MCMC), we efficiently 

solve the posterior inference task of various Bayesian max-margin models and extensive experimental re- 

sults demonstrate the effectiveness of our approach. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Bayesian max-margin (BMM) models have been shown to be 

very effective in many real-world applications, such as text analy- 

sis ( Zhu, Ahmed, & Xing, 2012 ), collaborative prediction ( Xu, Zhu, 

& Zhang, 2012 ), social network link prediction ( Zhu, 2012 ) and 

crowdsourcing ( Tian & Zhu, 2015 ). Such BMM models conjoin the 

advantages of the discriminative max-margin learning and flexible 

Bayesian models, and they achieve the best of the both worlds: ob- 

taining the flexibility from a Bayesian model and meanwhile doing 

discriminative max-margin learning, through a newly-developed 

unified Bayesian inference framework, regularized Bayesian infer- 

ence (RegBayes) ( Zhu, Chen, & Xing, 2014 ). 

In order to deal with large-scale datasets, developing effective 

and scalable inference methods is a crucial problem for Bayesian 

max-margin models, which is becoming a norm in many appli- 

cation areas. Previous variational-approximation-based inference 

methods are raised to solve the BMM models with mean-field as- 

sumptions on posterior distributions ( Zhu et al., 2012 ). When the 

BMM models use nonparametric Bayesian priors, such variational 

methods need to adopt the model truncation to finish the varia- 

tional approximation ( Xu, Zhu, & Zhang, 2013; Zhu, Chen, & Xing, 

2011 ). Moreover, in such inference scheme, solving support vec- 
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tor machine (SVM) subproblems is time-consuming, which moti- 

vated the further developments of the Gibbs classifier formulation 

and the data augmentation-based Gibbs sampler ( Xu et al., 2013; 

Zhang, Zhu, & Zhang, 2014; Zhu, Chen, Perkins, & Xing, 2014 ). 

In Bayesian inference, if we use a conjugate prior (w.r.t a given 

likelihood), we can easily derive the close-form posterior ( Gelman, 

Carlin, Stern, & Rubin, 2014 ). However, the BMM models are usu- 

ally non-conjugate due to the non-smoothness of the hinge loss, 

which is often involved in an unnormalized pseudo-likelihood. The 

straightforward Gibbs sampler is not applicable due to the non- 

conjugacy. With a newly discovered data augmentation technique 

( Polson & Scott, 2011 ), the augmented Gibbs sampler achieves ac- 

curate posterior sampling and is truncation-free for nonparametric 

BMM models ( Xu et al., 2013; Zhang et al., 2014 ). However, the 

Gibbs samplers with data augmentation are not efficient either in 

high-dimensional spaces as they often involve inverting large ma- 

trices ( Polson & Scott, 2011 ). Moreover, the benefit of introduc- 

ing extra variables would be counteracted in the view of the extra 

computation on dealing with the extra sampling variables ( Roberts 

& Stramer, 2002 ). 

In this paper, we present the subgradient-based Hamiltonian 

Monte Carlo (HMC) methods for BMM models, which directly draw 

samples from the original posterior instead of the augmented one. 

After adopting some mild conditions of the posterior functions, 

we show the approximate detailed balance property for subgra- 

dient HMC methods. Then using stochastic subgradient estima- 

tion ( Robbins & Monro, 1951; Welling & Teh, 2011 ), we further 
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develop the stochastic subgradient MCMC for fast computation. 

By annealing the discretization stepsizes properly, our stochastic 

subgradient MCMC methods approximately converge to the target 

posteriors of basic Bayesian SVM fairly efficiently. To apply stochas- 

tic subgradient MCMC on two different types of BMM models 

with latent variables, we design two different inference algorithms 

for latent structure discovery, including a nonparametric Bayesian 

model. Our stochastic subgradient MCMC can achieve dramatically 

fast sampling and meanwhile draw accurate posterior samples. We 

carry out extensive empirical studies on large-scale applications to 

show the effectiveness and scalability of the presented stochastic 

subgradient MCMC methods for BMM models. 

We note that there have been several previous attempts of 

using subgradient information in HMC or Langevin Monte Carlo 

( Neal, 2012; Welling & Teh, 2011 ), yet our work stands as a first 

close investigation, in which we give the theoretical guarantee and 

carry out systematic studies on the stochastic subgradient MCMC 

for Bayesian max-margin learning. 

2. Preliminaries 

We first briefly review the Bayesian max-margin models with 

Gibbs classifiers. Then, we introduce the background knowledge of 

the inference methods, including Hamiltonian Monte Carlo (HMC) 

and its extension, as well as stochastic gradient Hamiltonian Monte 

Carlo. 

2.1. Bayesian max-margin models 

With the generic framework of RegBayes ( Zhu, Chen, & Xing, 

2014 ), we can design more flexible Bayesian models by adding 

proper regularization on the target posterior. Namely, after adding 

posterior regularization to a functional-optimization-reformulated 

Bayesian model, a RegBayes model generally solves the following 

problem, 

inf 
q (M ) ∈P 

KL ( q (M ) || π(M ) ) − E q [ log p(D|M )] + c · R (q ) , (1) 

where M denotes the model (parameters); P is the feasible space 

of probability distributions q (M ) ; KL( q ( ·)|| π ( ·)) is the KL diver- 

gence from the target posterior q (M ) to the prior π(M ) ; D is 

the observation dataset; c is a nonnegative regularization param- 

eter and R (q ) is a well-designed regularization term on q . It is not 

hard to show that if c equals to 0, the solution of problem (1) is the 

Bayes posterior q (M ) ∝ π(M ) p(D|M ) . If c is not zero, we have 

an extra dimension of freedom to introduce side information into 

the inference procedure through the posterior regularization term 

R (q ) . For example, when the regularization R is defined as a hinge 

loss in supervised learning tasks, such Regbayes models turn out to 

be Bayesian max-margin models and they successfully incorporate 

the flexibility of Bayesian models and the max-margin classifiers. 

This strategy has demonstrated promising performance in various 

tasks, including text classification and topic extraction ( Zhu et al., 

2012 ), social network analysis ( Zhu, 2012 ), and matrix factorization 

( Xu et al., 2012 ). 

In this paper, we consider two examples of Bayesian max- 

margin models with latent variables, including max-margin topic 

model (MedLDA) ( Zhu et al., 2012 ) and infinite SVM (iSVM) ( Zhu 

et al., 2011 ). But our methods can be applied to other BMM mod- 

els. Specifically, MedLDA uses a topic model to find the latent topic 

representations of the documents and uses a max-margin classi- 

fier to do document classification. Infinite SVM generally uses a 

Bayesian nonparametric Dirichlet process prior to describe data 

multi-modality and meanwhile uses max-margin classifiers to do 

discriminative tasks. More details of these two examples will be 

provided along the development of the proposed fast samplers for 

them. 

2.2. BMM models with a Gibbs classifier 

In the supervised learning setting, there are generally two types 

of classifiers that can be used with a Bayesian model to define a 

BMM model, namely, expected classifiers and Gibbs classifiers. In 

this part, we give the introduction of the two formulations and an- 

alyze the merits of choosing Gibbs classifiers. 

Let D = { (x d , y d ) } D d=1 
be a given training set. For each data point 

(x d , y d ) ∈ D, x d denotes the input features and y d is the corre- 

sponding label, which can be binary or multi-valued. To build a 

classifier, a Bayesian max-margin model can either use the input 

features or learn a set of latent features. We use x ′ 
d 

to denote the 

features that are fit into a classifier. We consider the linear classi- 

fier parameterized by η. Then if the labels are binary, the predic- 

tion rule is defined as 

ˆ y d = sgn 

[
f (η, x ′ d ) 

]
, f (η, x ′ d ) = η� x ′ d , (2) 

where sgn( ·) is the sign function. 

For the above setting, an expected classifier learns a poste- 

rior distribution q ( η) in a hypothesis space of classifiers that the 

q -weighted classifier ˆ y d = sgn 

(
E q [ f (η, x ′ 

d 
] 
)

will have the small- 

est possible risk, which is typically approximated by the training 

error R D (q ) = 

∑ D 
d=1 I ( ̂  y d � = y d ) , where I (·) is an indicator func- 

tion that equals to 1 if predicate holds otherwise 0. We define 

that L (y d , E q [ f (η, x ′ 
d 
)]) = max (0 , l − y d E q [ f (η, x ′ 

d 
)]) is the hinge 

loss function with regard to data point d and l ( ≥ 1) is the cost 

of making a wrong prediction. Then, we can use the RegBayes for- 

mulation ( Eq. (1) ) to define a BMM model with an expected clas- 

sifier by choosing the loss term R = 

∑ D 
d=1 L (y d , E q [ f (η, x ′ 

d 
)]) . It is 

known that the hinge loss R upper bounds the training error R D . 
Alternatively, the Gibbs classifier draws a classifier η according 

to q ( η) and uses it to do classification, which is proven to have nice 

generalization performance ( Germain, Lacasse, Laviolette, & Marc- 

hand, 2009; McAllester, 2003 ). In the Gibbs classifier, the corre- 

sponding loss is the expected hinge loss , 

R 

′ = 

D ∑ 

d=1 

E q [ L (y d , f (η, x ′ d ))] . (3) 

Since the hinge loss function L is convex, we can show that R 

′ is 

an upper bound of R , using Jensen’s inequality: 

E q [ L (y d , f (η, x ′ d ))] ≥ L (y d , E q [ f (η, x ′ d )]) . (4) 

Then, the expected hinge loss R 

′ is also the upper bound of the ex- 

pected training error of the Gibbs classifier R 

′ (q ) ≥ ∑ 

d E q [ I (y d � = 

ˆ y d )] . Therefore, the Gibbs classifier formulation gives a more relaxed 

model while at the same time can obtain uncertainty because we 

draw a single model for each time. In addition, with Gibbs classi- 

fiers, truncation-free sampling can be performed for BMM models 

with Bayesian nonparametric priors, which is more accurate than 

variational approximation. The BMM models with Gibbs classifiers 

are already shown to have better performance of both classifica- 

tion results and efficiency of the inference algorithms ( Xu et al., 

2013; Zhang et al., 2014; Zhu, Chen, Perkins, et al., 2014 ). 

2.3. Hamiltonian Monte Carlo 

One popular MCMC inference method is Hamiltonian Monte 

Carlo (HMC), also known as Hybrid Monte Carlo ( Neal, 2012 ). 

Hamiltonian Monte Carlo is built on the molecular dynamics and 

the advantage of HMC over random walk Metropolis and Gibbs 

sampling is proposing a distant move with a high acceptance prob- 

ability. More recently, the stochastic extensions of HMC are devel- 

oped for fast sampling. 

Formally, we are interested in the posterior distribution 

p(θ |D) ∝ exp (−U(θ ;D)) , where θ denotes the variables of inter- 
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