
Expert Systems With Applications 67 (2017) 228–238

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

An evolutionary algorithm for clustering data streams with a variable

number of clusters

Jonathan de Andrade Silva

a , 1 , ∗, Eduardo Raul Hruschka

b , 2 , João Gama

c , 3

a Computer Science Department, The University of Mato Grosso do Sul (UFMS) at Ponta Porã, Brazil
b Computer Science Department, The University of São Paulo (USP) at São Carlos, Brazil
c INESC-TEC Department, The University of Porto, Portugal

a r t i c l e i n f o

Article history:

Received 2 May 2016

Revised 15 August 2016

Accepted 12 September 2016

Available online 22 September 2016

Keywords:

Evolutionary algorithms

Clustering

Data streams

Concept drift

a b s t r a c t

Several algorithms for clustering data streams based on k -Means have been proposed in the literature.

However, most of them assume that the number of clusters, k , is known a priori by the user and can

be kept fixed throughout the data analysis process. Besides the difficulty in choosing k , data stream clus-

tering imposes several challenges to be addressed, such as addressing non-stationary, unbounded data

that arrive in an online fashion. In this paper, we propose a Fast Evolutionary Algorithm for Clustering

data streams (FEAC-Stream) that allows estimating k automatically from data in an online fashion. FEAC-

Stream uses the Page–Hinkley Test to detect eventual degradation in the quality of the induced clusters,

thereby triggering an evolutionary algorithm that re-estimates k accordingly. FEAC-Stream relies on the

assumption that clusters of (partially unknown) data can provide useful information about the dynamics

of the data stream. We illustrate the potential of FEAC-Stream in a set of experiments using both syn-

thetic and real-world data streams, comparing it to four related algorithms, namely: CluStream-OMR k ,

CluStream-B k M, StreamKM ++ -OMR k and StreamKM ++ -B k M. The obtained results show that FEAC-Stream

provides good data partitions and that it can detect, and accordingly react to, data changes.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Advances in both hardware and software have enabled large-

scale data acquisition. Currently, enormous amounts of data are

being collected in dynamic environments, at high speeds. Such

data are usually referred to as data streams . A data stream is

an unbounded, ordered sequence of objects that must be ac-

cessed in order and that can be read only once or a small num-

ber of times (Guha, Meyerson, Mishra, Motwani, & O’Callaghan,

2003). In recent years, data streams have attracted significant at-

tention because of relevant applications, e.g., see Gama (2010) ;

Lughofer, Macian, Guardiola, and Klement (2010) ; Mouchawe

(2010) ; Zhang, Zhu, Shi, Guo, and Wu (2011) .

∗ Corresponding author.

E-mail addresses: jonathan.andrade@ufms.br (J.d. Andrade Silva),

erh@icmc.usp.br (E.R. Hruschka), jgama@fep.up.pt (J. Gama).
1 Present Address: Campus of Ponta Porã, The University of Mato Grosso do Sul

(UFMS-CPPP)
2 Present Address: Department of Computer Science, The University of São Paulo

(USP) at São Carlos, São Paulo, Brazil
3 Present Address: Laboratory of Artificial Intelligence and Decision Support, Uni-

versity of Porto (UP), Porto, Portugal

Data streams must be intelligently transformed into meaning-

ful and actionable information, which can then be used to enable

more effective decision-making. To accomplish that goal, machine

learning algorithms that are capable of continuous learning over

time play a pivotal role. Specifically, data streams require learning

algorithms that can adapt models, eventually forgetting data sam-

ples that become obsolete. In this context, incremental algorithms

are of great relevance because they can avoid the computationally

intensive task of re-training the whole model while accounting for

dynamic patterns in the data that change over time. Additionally,

the data stream must be processed in a single-pass-like manner,

i.e., the data stream cannot be read again due to storage limita-

tions. Usually, the data objects are discarded after being processed.

A useful form of analyzing data streams involves cluster-

ing (Aggarwal, Han, Wang, & Yu, 2004; Ailon, Jaiswal, & Mon-

teleoni, 2009; Gama, 2010; Shindler, Wong, & Meyerson, 2011;

Silva et al., 2012). The literature on clustering is very large.

Of the many algorithms that is available is k -Means, which is

very popular for data mining due to its simplicity, scalabil-

ity, and empirical success in many real-world applications (Jain,

2009; Wu et al., 2007). Several k -Means variants have been pro-

posed to address data streams, e.g., see Ackermann et al. (2012) ;

Aggarwal, Han, Wang, and Yu (20 03,20 04) ; Guha et al. (2003) ;

http://dx.doi.org/10.1016/j.eswa.2016.09.020

0957-4174/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.eswa.2016.09.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.09.020&domain=pdf
mailto:jonathan.andrade@ufms.br
mailto:erh@icmc.usp.br
mailto:jgama@fep.up.pt
http://dx.doi.org/10.1016/j.eswa.2016.09.020

J.d. Andrade Silva et al. / Expert Systems With Applications 67 (2017) 228–238 229

O’Callaghan, Meyerson, Motwani, Mishra, and Guha (2002) . Despite

the successful application of these algorithms to many real-world

problems, they have a major limitation: the number of clusters, k ,

must be defined a priori.

From an optimization perspective, clustering can be formally

considered to be a specific type of NP-hard grouping problem

(Falkenauer, 1998). Evolutionary algorithms are meta-heuristics

that are widely believed to be able to effectively produce sub-

optimal solutions on NP-hard problems in a reasonable amount

of time. Under this assumption, a large number of evolutionary

algorithms for solving clustering problems have been proposed

in the literature (see Hruschka, Campello, Freitas, and de Car-

valho (2009) for an overview). More specifically, the Fast Evolution-

ary Algorithm for Clustering (FEAC) (Alves, Campello, & Hruschka,

2006) has shown to be especially efficient for automatically esti-

mating k from data (Naldi, Campello, Hruschka, & Carvalho, 2011).

However, this algorithm was not designed to address data streams.

Aiming at circumventing such a limitation, we extend the FEAC

in such a way that it can address data streams. The resulting al-

gorithm is called the FEAC-Stream. To the best of our knowledge,

this method is the first evolutionary algorithm for clustering data

streams that addresses the estimation of k from the data.

In data stream scenarios, ideally the clustering algorithms

should be able to update the data partition in an online fash-

ion (Silva et al., 2012). This alternative can save computational re-

sources when clusters do not change significantly over time. In or-

der to determine if there is a change in the data partition, it is

necessary to perform a change detection test. Among the alterna-

tives in the literature, the Page–Hinkley (PH) Test (Mouss, Mouss,

Mouss, & Sefouhi, 2004) is an efficient method to detect changes

in the normal behavior of a process (Gama, Žliobait ̇e, Bifet, Pech-

enizkiy, & Bouchachia, 2014). Bearing this property in mind, we

propose a change detection procedure that is based on the PH Test

(Mouss et al., 2004). Specifically, the PH Test was adapted to de-

tect whether the assignment of an object to the closest cluster in-

creases the intra-cluster distances significantly.

The potential of the proposed FEAC-Stream is illustrated

by comparing it to the framework proposed in de An-

drade Silva and Hruschka (2011) , which is based on three state-

of-the-art algorithms for clustering data streams, namely, Stream

LSearch (O’Callaghan et al., 2002), CluStream (Aggarwal et al.,

2003), and StreamKM ++ (Ackermann et al., 2012), combined with

two algorithms for estimating the number of clusters, which are

Ordered Multiple Runs of k -Means (OMR k) (Naldi et al., 2011) and

Bisecting k -Means (B k M) (Steinbach, Karypis, & Kumar, 20 0 0).

The remainder of this paper is organized as follows. In

Section 2 , we briefly review related approaches. Section 3 presents

the proposed evolutionary algorithm for clustering data streams

(FEAC-Stream). Experimental results are reported in Section 4 . Fi-

nally, Section 5 concludes the paper.

2. Related Work

In general, the data stream clustering problem is defined as

to maintain continuously consistent good clustering of processed

objects using a small amount of memory and time (Guha et al.,

2003). Ideally, the algorithms should incrementally process the

data objects, rapidly detect and react to cluster evolution, pro-

vide a model representation that does not grow with the num-

ber of objects processed and handle outliers (Silva et al., 2012).

Bearing these issues in mind, several clustering algorithms have

been proposed in the literature (Ackermann et al., 2012; Aggar-

wal et al., 20 03; 20 04; Ailon et al., 20 09; Broder, Garcia-Pueyo,

Josifovski, Vassilvitskii, & Venkatesan, 2014; Cui et al., 2014; Guha

et al., 2003; Hadian & Shahrivari, 2014; O’Callaghan et al., 2002 ;

Shindler et al., 2011). Not surprisingly, most of them are based on

k -Means and its variants. For example, in O’Callaghan et al. (2002) ,

the authors proposed the Stream LSearch algorithm. This algo-

rithm uses the divide and conquer strategy, which divides the

data streams into chunks of data and, then, discovers clusters in

each of these chunks and, finally, finds clusters from the cen-

troids of each chunk. Aggarwal et al. (2003) point out that Stream

LSearch is implemented as a continuous version of k -Means and

assumes that the clusters are to be induced over the entire data

stream. One of the most influential clustering data stream algo-

rithms is the CluStream (Aggarwal et al., 2003). This algorithm

considers that the data evolves over time and allows the explo-

ration of clusters over different portions of the stream. The clus-

tering process is divided into two components: (i) an online com-

ponent that summarizes the data stream with a specific data struc-

ture (micro-clusters) and (ii) an offline component that uses these

micro-clusters to induce clusters via a variant of k -Means. The au-

thors in Ackermann et al. (2012) proposed the StreamKM ++ algo-

rithm, which summarizes the data stream by extracting a small

set of objects (coreset) (Agarwal, Har-Peled, & Varadarajan, 2004;

B ̄adoiu, Har-Peled, & Indyk, 2002) and finds k clusters with the k -

Means ++ algorithm. The k -Means ++ can be viewed as a seeding

procedure for the k -Means. Despite the successful application of

these algorithms to many real-world problems, they have a ma-

jor limitation: the number of clusters, k , must be specified in ad-

vance by the user. We note that some algorithms assume that the

value of k is not required as input but a careful look reveals that

another indirect parameter that controls it is required in advance.

This is actually much worse than specifying the number of clus-

ters (which is a more intuitive parameter to be set by the user)

in advance — e.g., setting the radius of clusters or their minimum

number of points.

A few algorithms are able to estimate the number of clus-

ters from data (Albertini & de Mello, 2013; de Andrade Silva &

Hruschka, 2011; Beringer & Hüllermeier, 2006; Lughofer, 2012).

In particular, a fuzzy c-means algorithm was proposed by

Beringer and Hüllermeier (2006) where the k value is adjusted

by choosing the best value between k + 1 and k − 1 accord-

ing to a variant of the Xie–Beni index (Xie & Beni, 1991). In

Lughofer (2012) , split-and-merge strategies were proposed to esti-

mate the number of clusters by increasing or decreasing the value

of k according to threshold values. In Albertini and de Mello (2013) ,

the Ordered Multiple Runs of k -Means algorithm is combined with

Markov Models to estimate the number of clusters. The algorithms

proposed in de Andrade Silva and Hruschka (2011) extend three

state-of-art k -means based algorithms to estimate the number of

clusters. Basically, the algorithms for clustering data streams can

be described by means of two components, namely: a streaming

step and a clustering step. To estimate the number of clusters from

the data, the framework proposed in de Andrade Silva and Hr-

uschka (2011) uses an intermediate ˆ k -step, as illustrated in Fig. 1 .

More precisely, the streaming algorithm creates and keeps updated

stream summary data structures whose size is smaller than the

whole data stream (Han & Kamber, 20 0 0). After building this sum-

mary, the k value is estimated via well-known algorithms for esti-

mating the number of clusters from steady-state datasets, namely,

Ordered Multiple Runs of k -Means (OMR k) (for a recent reference,

see Vendramin, Campello, & Hruschka (2010)) and Bisecting k -

Means (B k M) (Steinbach et al., 20 0 0). Then, not only the estimated

number of clusters but also the obtained cluster centers serve as

inputs to the clustering step .

The framework illustrated in Fig. 1 can make use of a va-

riety of algorithms. Among the available alternatives, we chose

the popular CluStream (Aggarwal et al., 2003) and StreamKM ++
(Ackermann et al., 2012). In the following, we address how they

can be adapted to be used in the framework of Fig. 1 with respect

Download	English	Version:

https://daneshyari.com/en/article/4943725

Download	Persian	Version:

https://daneshyari.com/article/4943725

Daneshyari.com

https://daneshyari.com/en/article/4943725
https://daneshyari.com/article/4943725
https://daneshyari.com/

