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Abstract

In a recent paper we introduced a definition of f -divergence for non-additive measures. In this paper we use this result to give a 
definition of entropy for non-additive measures in a continuous setting. It is based on the KL divergence for this type of measures. 
We prove some properties and show that we can use it to find a measure satisfying the principle of minimum discrimination.
© 2016 Published by Elsevier B.V.
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1. Introduction

Entropy is an important concept in information theory defined for probability distributions. It is used to measure 
the difference of the quantity of information before and after a data transmission. It is also used in statistics to help 
to define a probability distribution under some constraints. This is done through the application of the maximum 
entropy principle [2]. For example, the Gaussian distribution maximizes the entropy over all distributions with the 
same variance (see e.g. [2] p. 255 and Ch. 12). For continuous probability distributions the principle of minimum 
discrimination is used, which is based on the Kullback–Leibler divergence [11].

Non-additive measures [21,3,19] (also known as capacities and as fuzzy measures) generalize additive measures, 
and thus probabilities, replacing additivity by monotonicity. They have been applied in a large variety of contexts 
(computer vision, decision making, economics).

At present there exist several generalizations [24,12] of the entropy for discrete non-additive measures. See also [8]
for an overview. Nevertheless, up to our knowledge there are no definitions available for measures in continuous 
domains. In this paper we focus in this problem.

We introduce a definition for non-additive measures for infinite sets. The measure roots in our recent definition [23]
of the f -divergence for non-additive measures.

The structure of the paper is as follows. In Section 2, we present some definitions needed later on and in Section 3
we introduce our definition and give some properties. Section 4 generalizes the principle of minimum discrimination 
to non-additive measures. The paper finishes with some conclusions and lines of future work.
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2. Preliminaries

In this section we review some results on non-additive measures and integrals, divergences on measures, and 
entropies. See [19,21,3,5,18] for details.

2.1. Non-additive measures and the Choquet integral

A non-additive measure is a monotonic set function.

Definition 1. Let (�, F) be a measurable space. A set function μ defined on F is called a non-additive measure (or 
fuzzy measure) if an only if

1. 0 ≤ μ(A) ≤ ∞ for any A ∈F ;
2. μ(∅) = 0;
3. If A1 ⊆ A2 ⊆F then

μ(A1) ≤ μ(A2)

Distorted Lebesgue measures, introduced in [7], are an example of non-additive measures. They are defined in 
terms of the Lebesgue measure λ and a distortion function. The distortion function should be non-decreasing. Then, 
μ is a distorted Lebesgue measure if it can be expressed as μ = m ◦λ where m is a non-decreasing distortion function 
and λ is the Lebesgue measure. Recall that the Lebesgue measure of an interval [a, b] is λ([a, b]) = b − a.

Some other types of measures are useful in this paper.

Definition 2. Given a non-additive measure μ,

1. we say that μ is submodular if

μ(A) + μ(B) ≥ μ(A ∪ B) + μ(A ∩ B),

2. we say that μ is supermodular if

μ(A) + μ(B) ≤ μ(A ∪ B) + μ(A ∩ B).

The Choquet integral of a function with respect to a non-additive measure is defined below. Using the Choquet 
integral, we can consider the derivative of a non-additive measure with respect to another.

Definition 3. [1] Let (�, F) be a measurable space and let ν, μ : F → R
+ be non-additive measures. We say that ν

is a Choquet integral of μ if there exists a measurable function g : � → R
+ with

ν(A) = (C)

∫
A

gdμ (1)

for all A ∈F .

In this paper we need the following proposition related to the Choquet integral.

Theorem 1. [1,3,5] Let μ be a non-additive measure on (R, B), and f, g be non negative measurable functions. Then, 
the following properties hold.

1. When μ is submodular, then

(C)

∫
(f + g)dμ ≤ (C)

∫
f dμ + (C)

∫
gdμ.
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