

Available online at www.sciencedirect.com

FUZZY sets and systems

FSS:7104

Fuzzy Sets and Systems ••• (••••) •••-•••

www.elsevier.com/locate/fss

Block-wise construction of commutative increasing monoids

Slavka Bodjanova^a, Martin Kalina^{b,*}

^a Texas A&M University-Kingsville, Department of Mathematics, MSC 172, Kingsville TX 78363, USA

^b Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Dept. of Mathematics, Radlinského 11, Sk 810 01 Bratislava,

Slovak Republic

Received 30 December 2015; received in revised form 21 August 2016; accepted 1 October 2016

Abstract

Construction of new associative, commutative and increasing operations on the unit interval from a given operation * is proposed. It is shown that when * is a t-norm, t-conorm or a proper uninorm, new t-norms, t-conorms and proper uninorms can be obtained. © 2016 Elsevier B.V. All rights reserved.

Keywords: Associative operation; t-Conorm; t-Norm; Uninorm

1. Introduction

Associative operations are a useful tool in fuzzy set theory, but also in many areas of application, especially in decision-making under uncertainty (see, e.g., [3]), image processing (see, e.g., [4]), in fuzzy neural networks (see, e.g., [5]), etc. The most important classes of commutative increasing monoids in the framework of fuzzy sets are those of t-norms and t-conorms. In this area we would like to point out at least two monographs – by Klement, Mesiar and Pap [8] and by Schweizer and Sklar [10]. Later Jenei [6] introduced a new construction method for t-norms. As a technical tool he introduced the notion of a t-subnorm.

Another important class of commutative increasing monoids is that of uninorms. Uninorms appeared for the first time by Dombi [3] under the name 'aggregative operators'. Dombi's aggregative operators were constructed with the aim to fuzzify evaluation of objects in the theory of multicriteria decision-making. With the help of aggregative operators, objects can be divided into two classes – those which satisfy given criteria at least at a threshold level α , and those which do not. Aggregative operators introduced by Dombi are nowadays known under the name representable uninorms.

Independently of Dombi, also in the paper by Czogała and Drewniak [2] uninorms (but also other associative operations) were studied. Later uninorms were re-introduced by Yager and Rybalov [11] as a generalization of both t-norms and t-conorms. There are several families of uninorms. For an overview of basic families see, e.g., [9].

* Corresponding author. *E-mail addresses:* kfsb000@tamuk.edu (S. Bodjanova), kalina@math.sk (M. Kalina).

http://dx.doi.org/10.1016/j.fss.2016.10.002 0165-0114/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: S. Bodjanova, M. Kalina, Block-wise construction of commutative increasing monoids, Fuzzy Sets Syst. (2016), http://dx.doi.org/10.1016/j.fss.2016.10.002

ARTICLE IN PRESS

S. Bodjanova, M. Kalina / Fuzzy Sets and Systems ••• (••••) •••-•••

In [7] the authors introduced a construction method that enables to define new monotone associative and commutative operations $\oplus : [0, 1]^2 \rightarrow [0, 1]$ from a given monotone associative and commutative operation $* : [0, 1]^2 \rightarrow [0, 1]$. This method is called paving. The main idea of paving is that the unit interval is split into countably many disjoint sub-intervals $(I_i)_{i \in J}$, where J is an index-set. Further a family of increasing transformations $\varphi_i : I_i \rightarrow [0, 1]$ is given. The new operation \oplus (constructed via paving) is then defined by

$$x \oplus y = \varphi_{i\otimes i}^{-1}(\varphi_i(x) * \varphi_j(y)), \text{ where } x \in I_i \text{ and } y \in I_j$$
 (1)

and \otimes is an appropriate operation on the index-set J (\otimes might be, e.g., addition). Details about paving will be explained in the next section. Using this construction method, a uninorm that is strictly increasing on]0, 1[² (but not continuous) was constructed in [7].

In this paper we will modify the above mentioned method in such a way that we will consider splitting the unit interval into only finitely many sub-intervals. Further, we will be looking for properties of possible operations on J that could be used instead of addition.

2. Preliminaries

In this section we recall some known notions and facts to make the paper self-contained.

Let *X* be a non-empty set. An algebraic structure (X, \odot) is a *monoid* if \odot is an associative binary operation on *X* with a neutral element.

A function $N: [0, 1] \rightarrow [0, 1]$ is said to be a *negation* if N is decreasing and N(0) = 1, N(1) = 0.

A negation N is said to be *strong* if it is *involutive*, i.e., if N(N(x)) = x for all $x \in [0, 1]$.

Definition 2.1. (see, e.g., [8,10]) A *triangular norm* $T : [0, 1]^2 \rightarrow [0, 1]$ (t-norm for short) is a commutative, associative and increasing operation, whose neutral element is 1.

Remark 2.2. Note that, for a strong negation N, the N-dual operation to a t-norm T defined by S(x, y) = N(T(N(x), N(y))) is called a t-conorm. For more information, see, e.g., [8].

Definition 2.3 ([6]). A triangular subnorm $T_S: [0, 1]^2 \to [0, 1]$ (t-subnorm for short) is a commutative, associative, increasing binary operation fulfilling the condition $T_S(x, y) \le \min\{x, y\}$ for all $(x, y) \in [0, 1]^2$.

Dually, *triangular superconorm* $S_S: [0, 1]^2 \rightarrow [0, 1]$ (t-superconorm for short) is a commutative, associative, increasing binary operation fulfilling the condition $T_S(x, y) \ge \max\{x, y\}$ for all $(x, y) \in [0, 1]^2$.

Details and more facts on t-norms and t-conorms can be found in [8,10].

Definition 2.4 ([11]). A uninorm $U: [0, 1]^2 \rightarrow [0, 1]$ is a commutative, associative and increasing operation with arbitrary neutral element *e*.

If $e \in [0, 1[$, we say that the uninorm U is proper.

If U(1,0) = 0 holds, U is called conjunctive. If U(1,0) = 1 holds, U is called disjunctive. Conjunctive and disjunctive uninorms are dual to each other. For an arbitrary disjunctive uninorm U and a strong negation N its N-dual conjunctive uninorm is given by

 $U_N^d(x, y) = N\left(U(N(x), N(y))\right).$

For an overview of basic properties on uninorms we refer to [1].

Definition 2.5. Let $*: [0, 1]^2 \rightarrow [0, 1]$ be a commutative operation. Fix a value $a \in [0, 1]$. We say that $x \in [0, 1]$, $x \neq a$, is an *a*-divisor if there exists $y \in [0, 1]$, $y \neq a$ such that

x * y = a.

Please cite this article in press as: S. Bodjanova, M. Kalina, Block-wise construction of commutative increasing monoids, Fuzzy Sets Syst. (2016), http://dx.doi.org/10.1016/j.fss.2016.10.002

2

Download English Version:

https://daneshyari.com/en/article/4943789

Download Persian Version:

https://daneshyari.com/article/4943789

Daneshyari.com