

Available online at www.sciencedirect.com

FSS:7077

Fuzzy Sets and Systems ••• (••••) •••-•••

www.elsevier.com/locate/fss

A non-frame valued Cartesian closed category of liminf complete fuzzy orders

Min Liu^{a,*}, Bin Zhao^b

^a School of Sciences, Chang'an University, 710064, Xi'an, PR China ^b College of Mathematics and Information Science, Shaanxi Normal University, 710062, Xi'an, PR China

Received 8 August 2015; received in revised form 25 July 2016; accepted 30 July 2016

Abstract

Let $H = \{0, \frac{1}{2}, 1\}$ with the natural order and $p\&q = \max\{p + q - 1, 0\}$ for all $p, q \in H$. It is proved that the category of liminf complete *H*-ordered sets is Cartesian closed. It reveals that there exists a Cartesian closed category consisting of non-frame valued liminf complete fuzzy ordered sets.

 $\ensuremath{\mathbb C}$ 2016 Elsevier B.V. All rights reserved.

Keywords: Fuzzy relations; L-order; Liminf complete L-ordered set; Cartesian closed category

1. Introduction

In 1971, Zadeh introduced the notion of fuzzy preorders [23]. Later, this notion was extended to the setting that the truth-value table is a complete residuated lattice L and the concept of L-ordered sets was introduced in [3]. Categorically speaking, an L-ordered set is just an L-enriched category [12,13,18,19]. Since this notion was introduced to the study of domain theory [7,10,13], many basic concepts such as direct completeness, continuity and Scott topology in domain theory have been extended to the L-valued setting [13,18–22,24]. Thus, L-ordered sets give an important approach to the study of Quantitative Domain theory [7,17,18].

Searching for Cartesian closed categories is one of the basic problems in domain theory. Turn to the *L*-valued setting, based on the condition that *L* being a frame, several Cartesian closed categories have been obtained [14,15, 22]. In [14], Lai and Zhang proved that when the truth-value lattice *L* is a frame the category **Liminf**(*L*) of liminf complete *L*-ordered sets is Cartesian closed, however, if *L* is a complete residuated lattice then this category is seldom Cartesian closed. In fact, it is proved that if L = ([0, 1], &) with & being a continuous t-norm, then the category **Liminf**(*L*) is Cartesian closed if and only if $\& = \land [14]$. So, a natural question is whether there exists a complete residuated lattice *L* such that *L* is not a frame but the category of liminf complete *L*-ordered sets is Cartesian closed.

* Corresponding author. E-mail addresses: liumin@chd.edu.cn (M. Liu), zhaobin@snnu.edu.cn (B. Zhao).

http://dx.doi.org/10.1016/j.fss.2016.07.008 0165-0114/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: M. Liu, B. Zhao, A non-frame valued Cartesian closed category of liminf complete fuzzy orders, Fuzzy Sets Syst. (2016), http://dx.doi.org/10.1016/j.fss.2016.07.008

2

ARTICLE IN PRESS

M. Liu, B. Zhao / Fuzzy Sets and Systems ••• (••••) •••-•••

In [14], it is shown that if H is the three-valued MV-algebra, then the category of H-ordered sets is Cartesian closed. In this note, we show that the category of liminf complete H-ordered sets is also Cartesian closed. Thus, there does exist a complete residuated lattice L that is not a frame but the category of liminf complete L-ordered sets is Cartesian closed. The problem to characterize those complete residuated lattices L for which **Liminf**(L) is Cartesian closed still remains open.

2. Cartesian closedness of Liminf(*H*)

Let *L* be a complete residuated lattice [3]. Since this paper is a continuation of [14], in order to make the paper more concise, we keep all notions about liminf complete *L*-ordered sets to agree with [14]. For concepts and results in domain theory and category theory, we refer to [1,2,9].

For convenience, we recall that a net $\alpha = \{x_{\lambda}\}_{\lambda \in D}$ in an *L*-ordered set *A* is *forward Cauchy*, if $1 = \bigvee_{\lambda \in D} \bigwedge_{\lambda \leq \mu \leq \sigma} A(x_{\mu}, x_{\sigma})$. A forward Cauchy net $\{x_{\lambda}\}_{\lambda \in D}$ in an *L*-ordered set *A* converges to $a \in A$, or *a* is a limit of $\{x_{\lambda}\}_{\lambda \in D}$, if for all $x \in A$, $A(a, x) = \bigvee_{\lambda \in D} \bigwedge_{\lambda \leq \mu} A(x_{\mu}, x)$. We denote the limit of $\alpha = \{x_{\lambda}\}_{\lambda \in D}$ by limit α or limit $\prod_{\lambda \in D} x_{\lambda}$ if it exists. An *L*-ordered set *A* is *limit complete* if each forward Cauchy net has a limit.

The complete residuated lattice considered in this note is the MV-algebra H with three elements. Precisely, $H = \{0, \frac{1}{2}, 1\}$ and $p\&q = \max\{p+q-1, 0\}$ for all $p, q \in H$. We note that the Łukasiewicz conjunction operation $p\&q = \max\{p+q-1, 0\}$ is the same as the nilpotent minimum $p * q = \min(p, q)$ if p > 1 - q and 0 otherwise. This well-known operation was introduced in [8] and also appears in [16]. For other conjunctions on 3-valued structures, we refer to [4].

It is trivial that (H, \wedge) is a frame [11]. The right adjoint for $p\&_-$ and $p\wedge_-$ will be denoted by $p \xrightarrow{\&}_-$ and $p \xrightarrow{\wedge}_-$, respectively.

Some properties of *H*-ordered sets are collected below for later use.

- Let A be an H-ordered set and {x_λ}_{λ∈D} a monotone net in the underlying ordered set A₀. Then V_{λ∈D} ∧_{λ≤μ} A(x_μ, x) = ∧_{i∈D} A(x_i, x) for all x ∈ A. This shows that if lim inf_{λ∈D} x_λ exists, then lim inf_{λ∈D} x_λ equals the supremum of the net {x_λ}_{λ∈D} in A₀. In particular, the underlying ordered set A₀ of a liminf complete H-ordered set A is directed complete.
- In an *H*-ordered set *A*, a net {x_λ}_{λ∈D} is forward Cauchy if and only if it is eventually monotone in A₀ because 1 is a compact element in *H*.
- Let $\{x_{\lambda}\}_{\lambda \in D}$ be a forward Cauchy in an *H*-ordered set *A*. Take some $\lambda_0 \in D$ such that $x_u \ge x_{\lambda}$ whenever $\mu \ge \lambda \ge \lambda_0$. Let $D' = \{\lambda \in D | \lambda \ge \lambda_0\}$. Then $\{x_{\lambda}\}_{\lambda \in D}$ converges if and only if $\{x_{\lambda}\}_{\lambda \in D'}$ converges, in this case $\liminf_{\lambda \in D} x_{\lambda} = \liminf_{\lambda \in D'} x_{\lambda}$.

Lemma 2.1. Let A, B be two H-ordered sets, $f : A \rightarrow B$ an order preserving map. Then

- (1) A is limit complete if and only if every monotone net in A_0 converges in A.
- (2) If A is limit complete then f is limit continuous if and only if f preserves limits of monotone nets if and only if $f : A_0 \rightarrow B_0$ is Scott continuous.

Let [A, B] be the set of order preserving maps from A to B. The function space [A, B] is defined by $[A, B](f, g) = \bigwedge_{x \in A} B(f(x), g(x))$. For the sake of unambiguity, we denote this *L*-order by sub in this paper. Denote the set of all liminf continuous functions from A to B by $[A \to B]$. Then $([A \to B], \text{sub})$ is a sub-*L*-ordered set of ([A, B], sub). If B is a liminf complete *L*-ordered set, then $([A \to B], \text{sub})$ is liminf complete and the liminf of a forward Cauchy net $\{f_{\lambda}\}_{\lambda \in D}$ in $([A \to B], \text{sub})$ is given by $f(x) = \liminf_{\lambda \in D} f_{\lambda}(x)$ [13,14]. Thus, $([A \to B], \leq_{\text{sub}})$ is closed in the set of Scott-continuous functions from A_0 to B_0 under the formation of directed sups.

Let A, B be two H-ordered sets. Define $P : [A, B] \times [A, B] \longrightarrow H$ as follows:

$$P(f,g) = \bigvee \{ p \in H | \forall x, y \in A, p \land A(x,y) \le B(f(x),g(y)) \}.$$

Then P is an H-order on [A, B] (see [6]). Denote the H-ordered set ([A, B], P) by $[A, B]_P$. Define $ev : [A, B]_P \times A \longrightarrow B$ by ev(f, x) = f(x). Then ev is order preserving (see [5,6]). Restricting to the set of limit continuous

Download English Version:

https://daneshyari.com/en/article/4943831

Download Persian Version:

https://daneshyari.com/article/4943831

Daneshyari.com