

Please cite this article in press as: J. Medina et al., Minimal solutions of general fuzzy relation equations on linear carriers. An algebraic characterization, Fuzzy Sets Syst. (2016), http://dx.doi.org/10.1016/j.fss.2016.02.004

[m3SC+; v1.225; Prn:10/02/2016; 11:43] P.2 (1-12)

J. Medina et al. / Fuzzy Sets and Systems ••• (••••) •••-•••

applications. This paper considers a general setting, in which the operators may neither be commutative nor asso-ciative and they only need to be monotone and residuated inf-preserving mappings of non-empty sets on the right argument. This last property is not restrictive. The linearity of the carrier, together with the inf-preserving property,

ensures the existence of minimal solutions whenever a solution exists.

Moreover, an algebraic characterization of these solutions is given, which provides a mechanism to obtain the minimal solutions. Before that, two illustrative examples will be introduced for a better understanding of the method. Furthermore, a comparison with other frameworks in past publications is given, which shows that the considered setting is more general in order to ensure minimal solutions and to provide a method to compute them. Hence, this can be used in a larger range of applications.

The structure of the paper is as follows: Section 2 introduces a general setting, from which a method to obtain the minimal solutions of a solvable fuzzy relation equation is then given in Section 3. Section 5 presents a comparison with other frameworks and the paper finishes with some conclusions and future works.

2. General fuzzy relation equations

A complete linear lattice¹ (L, \leq) is the carrier considered throughout this paper, hence, the bottom and the top elements exist in L and are denoted as 0, 1, respectively. Given a set V, the ordering \leq in the lattice induces a partial order on the set of L-fuzzy subsets of V, that is, in the set L^{V} . This ordering is defined, for each pair of fuzzy subsets $S, S' \in L^V$, as $S \prec S'$ if and only if $S(v) \prec S'(v)$, for all $v \in V$. This ordering provides to L^V the structure of a complete lattice.

Moreover, the general residuated operator used to define the fuzzy relation equation is $\odot: L \times L \to L$, such that it is order preserving and there exists an operator $\rightarrow : L \times L \rightarrow L$, satisfying the following adjoint property with \odot

$$x \odot y \leq z$$
 if and only if $y \leq x \to z$ (1)

for each x, y, $z \in L$. Note that this property is equivalent to \odot preserves supremums in the second argument; $x \odot \bigvee \{y \mid z \in L\}$ $y \in Y$ = $\bigvee \{x \odot y \mid y \in Y\}$, for all $Y \subseteq L$. Hence, very few properties are assumed. An important notion needed in this paper is the definition of a cover.²

Definition 1. Given an ordered set (A, \leq) and non-empty subsets S_1, \ldots, S_n of A, an element $a \in A$ is a cover of $\{S_1, \ldots, S_n\}$, if for each $i \in \{1, \ldots, n\}$, there exists $s_i \in S_i$ such that $s_i \preceq a$. A cover $a \in A$ is called *minimal* if every element $d \in A$ satisfying $d \prec a$, is not a cover of $\{S_1, \ldots, S_n\}$.

Note that when (A, \leq) is a complete lattice, minimal covers always exist in A. Given the pair (\odot, \rightarrow) , a fuzzy relation equation in the environment of this paper is the equation:

$$R \circ X = T, \tag{2}$$

where $R: U \times V \to L, T: U \times W \to L$ are given finite L-fuzzy relations and $X: V \times W \to L$ is unknown, which can be expressed by matrices; and $R \circ X$ is defined, for each $u \in U$, $w \in W$, as

$$(R \circ X)\langle u, w \rangle = \bigvee \{ R \langle u, v \rangle \odot X \langle v, w \rangle \mid v \in V \}$$

Therefore, this is an *L*-fuzzy relation which can also be written as a matrix.

It is well known that the fuzzy relation equation (2) has a solution if and only if

$$(R \Rightarrow T)\langle v, w \rangle = \bigwedge \{ R \langle u, v \rangle \to T \langle u, w \rangle \mid u \in U \}$$

is a solution and, in that case, it is the greatest solution, see [22,26]. This result is constructive in the sense that, whenever solutions are known to exist, we can always compute at least one solution. The greatest solution is also a starting point in efforts to find and construct minimal solutions.

Please cite this article in press as: J. Medina et al., Minimal solutions of general fuzzy relation equations on linear carriers. An algebraic characterization, Fuzzy Sets Syst. (2016), http://dx.doi.org/10.1016/j.fss.2016.02.004

See [7] for a detailed definition of this structure.

The definition of cover (Definition 1) is different with [18,16] and [17]. Moreover, our approach is more general and it does not depend on the special type of the composition 'o' of fuzzy relations.

Download English Version:

https://daneshyari.com/en/article/4943858

Download Persian Version:

https://daneshyari.com/article/4943858

Daneshyari.com