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Abstract

In this paper we introduce and study new concept of differentiability for fuzzy-set-valued functions. This derivative considers 
possible local interactivity in the process studied. Several properties of differentiability and integrability are investigated for the 
new concept and they are compared to similar fuzzy differentiabilities like Hukuhara differentiability and generalized Hukuhara 
differentiability. Furthermore, we establish theorems as the fundamental theorem of calculus. Ultimately, we exhibit some results 
for fuzzy initial value problem and an application.
© 2016 Published by Elsevier B.V.
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1. Introduction

There are at least two types of theory of fuzzy differential equations (FDEs) in the literature. The first uses the 
derivative for fuzzy-set-valued functions (also known as fuzzy processes) where a fuzzy function associates a fuzzy 
number with each t ∈ [a, b]. Such derivatives were introduced by Puri and Ralescu [1] and they originated from 
the Hukuhara derivative for real set-valued functions. The theory of fuzzy differential equations derived from this 
derivative is the most widespread and has been widely studied [2–6]. This type of differential equation suffers from 
the defect of having solutions with increasing diameters over time [2,3,7]. This means that as the time passes, the more 
fuzzy (diffuse, uncertain) the process becomes. Bede and Gal in [8] improved on the concept of derivative presented 
by Puri and Ralescu in [1] in such a way that the solutions of FDEs do not have, necessarily, increasing diameter. 
That is, the process can become less fuzzy in the course of the time. The second type of theory of FDEs makes use 
of fuzzy sets of functions instead of fuzzy-set-valued functions. We consider the fuzzy sets of functions as fuzzy 
functions, though they are not functions, strictly speaking. These were introduced by Hullermeier in [9] (in parallel 
by Baidosov [10]) whose theoretical basis is the theory of differential inclusions and fuzzy differential inclusions 
(see [11]). In this type of FDEs, there is no concept of derivative of fuzzy functions. The derivative used is the same 
as that adopted for standard functions since it differentiates the functions of the support of fuzzy sets of functions. 
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Recently, for this type of fuzzy function, Barros et al. [12] introduced the concept of derivative from the fuzzification 
operator “derivation” initially applied to real-valued functions. Thus, they present, in fact, a theory of FDE that is very 
close to the approach of [9] and [10].

The FDEs studied in this paper are developed for fuzzy-number-valued functions, that is, fuzzy functions of type 
f : [a, b] → RF , where RF is the space fuzzy numbers. Nevertheless, the derivative is based on the difference 
between fuzzy sets, that is, the difference is obtained from possibility (or membership) distributions of the fuzzy sets 
involved, considering its joint possibility distributions [13].

The derivative we study takes into account possible interactivities (dependencies) present in the process to be stud-
ied. Therefore, in this methodology, the “infinitesimal” takes into account, that is, incorporates, possible correlations 
in the process according to the joint possibility distributions involved. As a result, the derivative of fuzzy processes 
f : [a, b] → RF changes from case to case, depending on the joint possibility distribution adopted. This is the funda-
mental difference from the case the derivative of fuzzy process is the Hukuhara derivative (or generalized [8]), initially 
defined for classic multi-valued function and where the interactivity (dependence) issues are not present (assumed to 
be independent or are neglected).

In our proposal, the α-levels of the derivative are expressed according to a joint possibility distribution adopted 
a priori, while in the case of the Hukuhara derivative (and its generalizations), the α-levels are determined a priori 
according to the Hukuhara difference. In this last case, the “interactivity” is prefixed and this presupposes that all 
the fuzzy process studied by this method has the same type of “correlation”. As we shall see, the fuzzy differential 
equations via derivative Hukuhara is a particular case of FDE using our derivative with interactivity.

We will focus our attention on the decay problem
{

u′ = −λu

u(0) = u0
(1)

and where we obtain the solution u(t) = u0e
−λt with u0 ∈ RF and λ > 0. Moreover, we will argue that it is incon-

sistent to adopt the Hukuhara derivative for the study of any problem of decay. According to our point of view, the 
FDE from the Hukuhara derivative perspective can be adopted just in expansive processes. Also, we will show that the 
derivative of the fuzzy function F(x) = c.g(x) is F ′(x) = c.g′(x) for g : R → R and c ∈RF , when g is continuously 
differentiable as Bede and Gal [8] have also done.

2. Preliminary

A fuzzy subset A of Rn is given by its membership function μA : Rn −→ [0, 1], where μA(x) means the degree to 
which x belongs to A. The α-levels of the fuzzy subset A are defined as:

[A]α = {x ∈R
n : μA(x) ≥ α} for 0 < α ≤ 1 and

[A]0 = {x ∈Rn : μA(x) > 0} for α = 0.

The fuzzy subset A of R is a fuzzy number if all their α-levels are closed and nonempty intervals of R and the 
support of A, supp(A) = {x ∈R : μA(x) > 0}, is finite. The family of the fuzzy subsets of Rn with nonempty compact 
and convex α-levels is denoted by F(Rn), while the family of fuzzy numbers is denoted by Rn

F .
The Pompeiu–Hausdorff distance d∞ :Rn

F ×R
n
F →R+ ∪ {0}, is defined by

d∞(A,B) = sup
0≤α≤1

dH ([A]α, [B]α) (2)

where dH is the Pompeiu–Hausdorff distance for sets in Rn. If A and B are fuzzy numbers, that is, A, B ∈ RF , then 
(2) becomes

d∞(A,B) = sup
0≤α≤1

max{|a−
α − b−

α |, |a+
α − b+

α |}.

From now on, when we refer to a continuous fuzzy function we mean it is continuous in relation to metric d∞. We 
denote by + and − the traditional (Minkowski) sum and difference between fuzzy numbers which can be also defined 
via Zadeh’s extension principle [14].
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