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Abstract

Di Nola and Gerla showed that MV-algebras and coupled semirings are in a natural one-to-one correspondence. We generalize 
this correspondence to residuated lattices satisfying the double negation law.
© 2015 Published by Elsevier B.V.
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It was shown by Di Nola and Gerla [6,7] that to every MV-algebra there can be assigned a so-called coupled 
semiring which bears all the information on that MV-algebra, i.e., the latter can be recovered by its assigned coupled 
semiring. This fact inspired us to modify the concept of a coupled semiring in order to get a similar representation for 
commutative basic algebras [4] or for general basic algebras [5].

Every MV-algebra is indeed a residuated lattice satisfying the double negation law, the prelinearity and the divisi-
bility condition (see [2] for details). Hence we try to find a representation by means of some sort of coupled semirings 
also for the more general class of residuated lattices. In fact, we are successful in the case where the double negation 
law is assumed.

This shows that the construction of a coupled semiring from [6] and [7] is quite general and it can be applied in 
the fairly general case of residuated lattices satisfying the double negation law. For similar categorical considerations 
see [1].

Finally, we want to stress the importance of semirings treated in the paper in applications and in the context of 
tropical geometry, see e.g. [10].

We start with the definition of a residuated lattice.
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Definition 1. A residuated lattice is an algebra L = (L, ∨, ∧, ⊗, →, 0, 1) of type (2, 2, 2, 2, 0, 0) satisfying the fol-
lowing axioms for all x, y, z ∈ L:

(i) (L, ∨, ∧, 0, 1) is a bounded lattice.
(ii) (L, ⊗, 1) is a commutative monoid.

(iii) x ≤ y → z if and only if x ⊗ y ≤ z

Remark 2. Condition (iii) is called the adjointness property.

As a source for elementary properties of residuated lattices see the monograph by Bělohlávek [2]. We will work 
with residuated lattices having one more property.

Definition 3. Let L = (L, ∨, ∧, ⊗, →, 0, 1) be a residuated lattice. On L we define two further operations as follows:

¬x := x → 0 and

x ⊕ y := ¬(¬x ⊗ ¬y)

for all x, y ∈ L. Further, we say that L satisfies the double negation law if ¬¬x = x for all x ∈ L.

If (L, ∨, ∧, ⊗, →, 0, 1) is a residuated lattice satisfying the double negation law then (L, ⊕, ¬, 0) need not be an 
MV-algebra. This can be seen from the following example:

Example 4. (Cf. [11].) If (L, ∨, ∧, 0, 1) denotes the bounded lattice given by the following Hasse diagram:

�

�

� �

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

0

a

b c

d

1

and we define binary operations ⊗ and → on L as follows:

⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a

b 0 0 b 0 b b

c 0 0 0 c c c

d 0 0 b c d d

1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 1 1 1 1
b c c 1 c 1 1
c b b b 1 1 1
d a a b c 1 1
1 0 a b c d 1

then we have



Download English Version:

https://daneshyari.com/en/article/4944006

Download Persian Version:

https://daneshyari.com/article/4944006

Daneshyari.com

https://daneshyari.com/en/article/4944006
https://daneshyari.com/article/4944006
https://daneshyari.com

