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Abstract

A fuzzy clustering method for random fuzzy sets is proposed. The starting point is a p-value matrix with elements obtained by 
comparing the expected values of random fuzzy sets by means of a bootstrap test. As such, the p-value matrix can be viewed as 
a relational data matrix since the p-values represent a kind of similarity between random fuzzy sets. For this reason, in order to 
cluster random fuzzy sets, fuzzy clustering techniques for relational data can be applied. In this context, the so-called NE-FRC 
algorithm is considered. One of the most important advantages of the NE-FRC is that the relational data could not be derived 
from Euclidean distances. Some simulations are presented to show the behavior of the proposed procedure and two applications to 
real-life situations are also included.
© 2016 Published by Elsevier B.V.
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1. Introduction

The available information is usually affected by various sources of uncertainty. In the case of randomness, probabil-
ity theory is the best tool for handling such a kind of uncertainty and the concept of random variable naturally arises. 
Fuzzy set theory [36] plays a relevant role in the presence of imprecision. If data are jointly random and imprecise, 
then the notion of Random Fuzzy Set (RFS for short) can be considered (see, e.g., Puri and Ralescu [23]). This is the 
case when fuzzy-valued observations of independent RFS’s are registered on a sample of statistical units.

In the literature, several fuzzy clustering methods for fuzzy data have been proposed. Refer to, e.g., D’Urso [8], 
Coppi et al. [7], Hung and Yang [16] and the references therein. Nonetheless, as far as we know, no attention has 
been paid to the clustering problem of RFS’s except for González-Rodríguez et al. [11] who developed a (non-fuzzy) 
hierarchical clustering procedure for RFS’s. Their idea is to detect clusters of RFS’s such that the RFS’s in each 
group have the same population expected value. This goal is achieved by taking into account both imprecision and 
randomness in the clustering process by using the p-values of a multi-sample test for the expectations of RFS’s (see, 
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for instance, Gil et al. [10] and González-Rodríguez et al. [12]). The higher the p-value, the more similar are the 
expectations between two RFS’s. As highlighted by González-Rodríguez et al. [11], the p-values represent measures 
of similarities between RFS’s. The so-obtained similarities consider both the fuzziness and the randomness. This is so 
because the adopted statistical test is able to handle data affected by fuzziness and the resulting p-value expresses a 
degree of similarity between two (random) expectations of RFS’s.

In this work, we develop a non-hierarchical fuzzy clustering procedure for RFS’s based on a p-value matrix. 
For this purpose, we apply fuzzy clustering algorithms for relational data, i.e., data coming from measures of sim-
ilarity/dissimilarity either computed objectively according to any metric or based on subjective knowledge. Several 
proposals for clustering relational data can be found in the literature. See, e.g., Davé and Sen [9], Runkler [30], 
Khalilia et al. [17] and the references therein. As we shall see, we suggest a novel procedure for clustering RFS’s 
using the algorithm introduced by Davé and Sen [9] applied to a p-value matrix rather than to a dissimilarity matrix. 
Differently from González-Rodríguez et al. [11], our proposal is much more efficient from a computational point of 
view and produces a fuzzy partition of the RFS’s. Therefore, the RFS’s are assigned to the clusters according to the 
so-called membership degrees ranging from 0 (complete non-membership) to 1 (complete membership). This is very 
welcome because it appears to be limited to get non-fuzzy clusters using fuzzy information.

The paper is organized as follows. In the next section some preliminaries on RFS’s are given. In Section 3 the 
multi-sample test and the (non-fuzzy) hierarchical clustering algorithm for RFS’s introduced by González-Rodríguez 
et al. [11] are recalled. Section 4 contains a review of fuzzy clustering algorithms for relational data. Section 5 is 
devoted to the proposed fuzzy non-hierarchical clustering algorithm for RFS’s. The results of a simulation study are 
discussed in Section 6 where the empirical performance of the proposal also in comparison with González-Rodríguez 
et al. [11] and the ability of some cluster validity indices to detect the known number of clusters are investigated. 
Section 7 contains two real-life applications. Finally, concluding remarks are provided in Section 8.

2. Preliminaries

The space Fc(R) of fuzzy numbers to be considered includes the mappings U : R → [0, 1] such that for each 
α ∈ (0, 1] the so-called α-level set (or α-cut) Uα = {x ∈R|U(x) ≥ α} belongs to the class of nonempty compact 
intervals in R (denoted by Kc(R)). The 0-level, U0, is the closure of the support of U .

The usual arithmetic between fuzzy values consists in the sum and the product by a scalar [36,22], which is an 
extension of the corresponding ones for intervals paying attention to the fuzzy meaning. Thus, if U, V ∈ Fc(R) and 
λ ∈R, U + λV can be defined so that for each α ∈ [0, 1]

(U + λV )α = Uα + λVα = {u + λv : u ∈ Uα,v ∈ Vα} . (1)

The arithmetic is non-linear due to the lack of symmetric element w.r.t. the Minkowski addition although (Fc(R), +, ·)
has a semilinear-conical structure since the addition extends level-wise the Minkowski sum of sets.

The metric used in the formalizations is based on the concepts of midpoint and spread (or radius) of the interval 
Uα ∈Kc(R), denoted as midUα and sprUα , respectively. Then, the distance between two fuzzy numbers U , V ∈Fc(R)

(see Trutschnig et al. [34]) can be defined by

D
ϕ
θ (U,V ) =

√√√√ ∫
(0,1]

[
(midUα − midVα)2 + θ (sprUα − sprVα)2]dϕ(α). (2)

In the latter definition, the value θ > 0 determines the relative weight of the distance of the generalized spreads 
(or, equivalently, the difference in shape or imprecision) with respect to the distance of the generalized midpoints 
(or difference in location). The choice of ϕ is based on the importance given to each α-level and it is associated to a 
bounded density measure with positive mass and support in (0,1]. In most of practical situations the Lebesgue measure 
is considered, which assigns the same importance to every α-level.

If 0 < θ ≤ 1, the metric Dθ
ϕ is equivalent to the well-known Bertoluzza metric (see Bertoluzza et al. [1]) and hence 

the first one generalizes the second one. It should also be noted that a value of θ closer to 0 gives more importance 
to the midpoints, while a high value of θ gives more importance to the spreads of the α-cuts. In practice, the most 
common choice is θ = 1/3 which is equivalent to the Lebesgue measure for each α-cut, unless more information 
about the data is available. Further discussions about this metric can be found in Trutschnig et al. [34].
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