ELSEVIER

Available online at www.sciencedirect.com

The Journal of Systems and Software 79 (2006) 231-245

d &< The Journal of
scIENcECDIREcT® systems and
Software

www.elsevier.com/locate/jss

Polyhedral space generation and memory estimation from
interface and memory models of real-time video systems

Benny Thornberg **, Qubo Hu °, Martin Palkovic !, Mattias O’Nils ?,
Per Gunnar Kjeldsberg °

& Mid-Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
® Norwegian University of Science and Technology, 7491 Trondheim, Norway
¢ IMEC, B-3001 Leuven, Belgium

Received 3 June 2004; received in revised form 18 April 2005; accepted 22 April 2005
Available online 21 June 2005

Abstract

We present a tool and a methodology for estimating the memory storage requirement for synchronous real-time video processing
systems. Typically, a designer will use the feedback information from this estimation to select the most optimal execution order for
software processors or space to time mapping for hardware. We propose to start from a conceptual interface and memory model
that captures memory usage and data transfers. This high-level modeling is provided as an extension library of SystemC called
IMEM. A common polyhedral iteration space is generated from the model, where polytopes are placed using a new placement algo-
rithm based on simple heuristics. This algorithm will ensure maximum freedom of selecting executing order as all negative depen-
dencies are removed to the length of zero. A demonstration is given regarding how the polytopes and dependency vectors can then
be used as input to a memory storage estimation tool called STOREQ.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Memory storage estimation; Polyhedral; Polytope placement; Modeling; Real-time; Video; SystemC

1. Introduction

Real-time video processing systems (RTVPS) use a
very large amount of data storage and transfers. This
will become a major design bottleneck for embedded
systems, since memories and bus transfers will consume
a large amount of power (Wuytack et al., 1998). Initial
work in the area of high-level synthesis of RTVPS
(Thornberg and O’Nils, 2003) has indicated the need

* Corresponding author. Tel.: +46 60 148917; fax: +46 60 148456.
E-mail addresses: benny.thornberg@mbh.se (B. Thornberg), qubo.
hu@iet.ntnu.no (Q. Hu), martin.palkovic@imec.be (M. Palkovic),
mattias.onils@mh.se (M. O’Nils), per.gunnar.kjeldsberg@jiet.ntnu.no
(P.G. Kjeldsberg).
! Tel.: +32 1628 1679.

0164-1212/$ - see front matter © 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.js5.2005.04.034

for memory storage estimation in order to efficiently
map a model onto an architecture. STOREQ (Kjelds-
berg et al., 2004) is a tool that can be used for the esti-
mation of memory STOrage REQuirements for data
intensive digital signal processing systems, namely
DSP systems. STOREQ memory estimation includes
selecting the most optimal processing order or space to
time mapping with respect to storage requirements,
which can guide the high-level synthesis to a better
result. This estimation is done using a polytope model
as the input (Kjeldsberg et al., 2004).

A polytope in this model is a multi-dimensional body
of iteration nodes when the statements with data write
or data read are executed. A statement that uses
data produced by an earlier statement is data depen-
dent on the earlier statement. These dependencies are

mailto:benny.thornberg@mh.se
mailto:qubo. hu@iet.ntnu.no
mailto:qubo. hu@iet.ntnu.no
mailto:martin.palkovic@imec.be
mailto:mattias.onils@mh.se
mailto:per.gunnar.kjeldsberg@iet.ntnu.no

232 B. Thornberg et al. | The Journal of Systems and Software 79 (2006) 231-245

Int Vr
Int Vc
Int Ce
Int Re

I
7
I
I

wo NN

r<Re+Vr, r++)

for(r=0;
0; c<Ce+Vc ,cC++)

for(c

{
if (r<Re && c<Ce)
/*S1*/ Alr,c]l = input();
if (r>=Vr && c>=Vc)
/*82*/ Blr,c] = £(A[r-Vr, c-Vcl);

0

| g
L] L] L] L] I. L] L] L] L] L] | L]
| I
f I
L] L] ._ _. _ L _ ._. _._ _.J L]
_ A
— o . . VLZA o(VV,V.C) o4c>
c
/ __/7
/B
J—
Fig. 1. Example of a common polyhedral iteration space.

represented as dependency vectors between the iteration
nodes, which can be calculated from the index expres-
sions. Fig. 1A shows an example code with a 2-dimen-
sional loop nest. The set of iteration nodes when the
statement S/ with data array A write is executed is rep-
resented as polytope 4 in Fig. 1B. Polytope B consists of
the set of iteration nodes when the statement S2 with
data array B write and data array A read is executed.
We simply say there are dependencies between these
two polytopes. One of them is depicted as vector ¥y
in Fig. 1B. The dependency between these two polytopes
is also depicted in Fig. 1C as a polytope dependency
graph. In this directed graph, the vertices correspond
to the polytopes and the single edge to the data flow
dependency going from polytope 4 to B.

The STOREQ tool has been developed to be a part of
the Data Transfer and Storage Exploration methodol-
ogy from IMEC (Catthoor et al., 2002). When used in
that context, a platform independent transformation
step identifies the corresponding polytopes and data
dependency vectors from a given application code. This
step also include polytope placement into a common
polyhedral iteration space (Danckaert et al., 2000).
The placement algorithm used becomes complicated
since both regularity and locality in data accesses are
considered. Verdoolaege et al. (2003) only looks at local-
ity and can achieve a reasonable result even for complex
multimedia applications. There are also some other
works in the area of polytope placement, which are re-

ferred to in Section 2. However, the complexity of all
these algorithms, still necessitate a complex tool for
the RTVPS we are looking at. An even simpler place-
ment algorithm would be sufficient enough and is thus
developed and implemented in this work.

This paper presents the integration of STOREQ into
the IMEM development workflow (Thornberg et al.,
2002). IMEM is a library extension of SystemC (Panda,
2001) for modeling of neighborhood-oriented multi-rate
synchronous real-time video processing systems. In
IMEM, no loops are initially specified and thus details
related to the final implementation are excluded. In
addition, the specification of coarse-grained data flow
dependencies is separated from the functional specifica-
tion of image processing operators, which makes code
pruning unnecessary. Code pruning is a source code
pre-processing step at which array accesses are sepa-
rated from the computational statements. Code pruning
is applied on C-code or Data Flow Language in the
DTSE-methodology (Catthoor et al., 1998). The inte-
gration of STOREQ requires the development of an
algorithm and a tool to support the transformation of
an IMEM model into a polytope model. The fact that
image frame sizes and data dependencies are captured
as C++ objects in IMEM, simplifies the extraction of
polytopes and dependency vectors. Neighborhood-ori-
ented RTVPS are perfectly regular in their data accesses,
simplifying the polytope placement algorithm that we
have developed.

This work has resulted in a new polytope placement
algorithm suitable for IMEM models and implemented
in the tool IMEM Projector. IMEM Projector can im-
port an IMEM model and map this model onto a Tri-
Media DSP prototyping platform (Thoérnberg and
O’Nils, 2003). To our knowledge, no similar approach
exists, where application specific, extended SystemC-
based modeling is combined with the geometrical poly-
hedral modeling into a memory storage estimation
methodology. This application specific methodology
takes advantage of simplifications such as the regularity
in RTVPS, the separation of data dependencies from
computation and the powerful system modeling pro-
vided by SystemC. This is also the reason why we are
doing polytope placement before integrating STOREQ,
as opposite to other approaches. This is discussed in
Section 8.3.

The rest of this paper is organized as follows. Section
2 reviews related work. Section 3 describes modeling of a
real-time video system in IMEM. Section 4 describes our
tool IMEM Projector and motivates the existence of
memory estimation in a system development workflow.
Section 5 explains the polyhedral iteration space and
how polytopes and dependencies can be generated from
an IMEM model. The polytope placement algorithm is
explained in Section 6. A real-life video system is pre-
sented in Section 7. Section 8 further discusses this work

Download English Version:

https://daneshyari.com/en/article/494407

Download Persian Version:

https://daneshyari.com/article/494407

Daneshyari.com

https://daneshyari.com/en/article/494407
https://daneshyari.com/article/494407
https://daneshyari.com/

