
Information Sciences 421 (2017) 1–14

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Modeling and control of flexible context-dependent

manufacturing systems

�

André Lucas Silva, Richardson Ribeiro, Marcelo Teixeira

∗

Federal University of Technology-Paraná, Pato Branco, Brazil

a r t i c l e i n f o

Article history:

Received 7 September 2016

Revised 20 August 2017

Accepted 26 August 2017

Available online 31 August 2017

Keywords:

Formal modeling

Context recognition

Automated programming

Factory automation

Flexible manufacturing systems

a b s t r a c t

In emerging Manufacturing Systems (MSs), flexibility is a key issue. It is related to the

ability for a MS to recognize the context and switch its workflow accordingly. Although

the literature has provided automated options to model and control MSs, programming

context-dependent controllers remains challenging. This is an event-based construction

that integrates a large and intricate combination of events and states in order to make

the controller flexible, i.e., include context-sensitiveness strategies subject to switching at

runtime. Without self-adaptation, each system configuration may require an entire con-

trol solution to be recalculated, which implies redesigning the whole modeling and imple-

mentation structures. This paper shows that a system model can nevertheless be enriched

with elements collected from the context, which optimizes the design of formula-based

constraints that can then be integrated to control frameworks for synthesis and code gen-

eration. The result is a controller that recognizes the context and takes control decisions

accordingly. Examples are provided to illustrate the approach.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A Manufacturing System (MS) is an industrial production process that transforms material into products by integrating

people, equipments and technology [1] . When it is context sensitive, i.e., it detects and reacts to changes occurred in the

factory floor, starting to behave differently, then it is said to be flexible , being called Flexible Manufacturing System (FMS)

[2] . Nowadays, FMSs represent an opportunity for shifting from fixed to customized production [3–5] . When associated to

computational technology, e.g., web, intelligence, Big Data, IoT, Cloud , etc., they lead to modern advanced methods for industry

of the future [6–9] .

In manufacturing automation, the use coordinated, intelligent and flexible work-units has becoming increasingly decisive

and they can help, for example, to autonomously move production and materials, perform tasks that are dangerous for

humans, increase performance, efficiency, customize production, etc. However, for a flexible work-unit to be really useful

in manufacturing, its controller is required to make “smart” responses to dynamic environments. It is expected that factory

components interact with each other and with the environment in a concurrent manner, sharing resources and behaving in

a maximally permissive and non blocking way.

� Modeling and Control of Context-Dependent Manufacturing Systems
∗ Corresponding author.

E-mail addresses: andsil@alunos.utfpr.edu.br (A. Lucas Silva), richardsonr@utfpr.edu.br (R. Ribeiro), marceloteixeira@utfpr.edu.br (M. Teixeira).

http://dx.doi.org/10.1016/j.ins.2017.08.084

0020-0255/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2017.08.084
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2017.08.084&domain=pdf
mailto:andsil@alunos.utfpr.edu.br
mailto:richardsonr@utfpr.edu.br
mailto:marceloteixeira@utfpr.edu.br
http://dx.doi.org/10.1016/j.ins.2017.08.084

2 A. Lucas Silva et al. / Information Sciences 421 (2017) 1–14

In conjunction, these features make it hard to obtain controllers that ensure safety properties in manufacturing. In fact,

the programming task depends on so many factors, such as the number of components, environment size, concurrency,

parallelism, behavioral shifting, etc., so that traditional paradigms for software development are usually unsuitable. The lit-

erature provides some alternatives, such as the use of concurrent and dynamic programming [10,11] , interfaces [12] , general-

purpose control languages [13,14] , computational intelligence [15,16] , etc. Another alternative is to adopt high level model-

driven strategies in order to express system behaviors and requirements [17–19] . In this case, automated operations can be

processed in order to calculate sub behaviors holding properties of interest.

When the process is event-driven, i.e., when the objective is to define operational sequences of machines based on events

that spontaneously occur in the plant, then state-machine is a natural choice for modeling. A formal approach that supports

the automated synthesis of controllers for Discrete Event-based Systems (DESs) is the Supervisory Control Theory (SCT) [20] .

Mathematically grounded on Finite-state Automata (FA) formalism [21] , the SCT facilitates capturing the system semantic

through high-level models and leads automatically to the optimal controller code.

In spite of its practical relevance and formal background, the SCT faces severe limitations to solve real, modern, industrial-

scale processes, as its modeling framework is essentially static and non adaptive. In fact, although FA can quite efficiently de-

scribe event-driven behaviors, they do not directly include, for example, context-sensitiveness. If a controller is not context-

sensitive, an entire control solution may have to be recalculated whenever the system configuration shifts, as every context

may impose a particular control law. As a consequence, the whole modeling and implementation structures also change,

which is time consuming and can be infeasible for systems comprising real-time constraints.

An alternative that has recently attracted attention in the literature suggests to enrich the SCT with Extended Finite-state

Automata (EFA), which combine FA to a variable structure [22,23] . Besides providing a user-friendly framework, EFA also

support efficient computational processing by means of abstraction techniques [24] , modular control [25] , etc. However,

from the best of our knowledge, EFA have not yet been exploited in modeling and control of flexible context-dependent

MSs.

In this paper, EFA are used to enrich a MS model with elements collected from the context updated by the system.

A set of variables is associated to the modeling structure in order to store context elements. Formulas are combined to

the system model transitions in order to update variables whenever a given target event occurs. Then, variable values are

used to express context-switching specifications that lead to flexibly coordinate factory floor components. The enriched

system model and specifications can be integrated to the SCT framework for synthesis [24] . The product is a controller that

recognizes the context and takes control decisions accordingly. A methodology that guides the EFA modeling is provided

and MSs examples illustrate the approach.

The manuscript is structured as follows. Section 2 introduces some preliminaries on DES control, which is exemplified in

Section 2.2 in the context of multiple robots coordination; Section 3 presents the modeling with EFA and its integration to

the SCT framework; An example is presented in Section 4 and some conclusions and perspectives are discussed in Section 6 .

2. Preliminaries

Discrete Event Systems (DESs) refer to a family of systems characterizing a number of industrial applications, such as

manufacturing, communication, robotic, etc. DESs have in common the fact that their transitions are not guided by the

time, but by events that occur irregularly, progressing the systems in many different and unpredictable manners [21] . Thus,

it is conceivable that modeling DESs is also different from modeling time-dependent systems.

Languages are formalisms that can be used to describe discrete-event behaviors [21] . Their basic structure are events ,

which are taken from a finite alphabet �, where �∗ denotes the set of all (finite) strings constructed by taking events from

�, including the empty string ε. A subset L ⊆�∗ is called a language . The prefix-closure of L is L = { s ∈ �∗ | st ∈ L for some t ∈

�∗ } , which includes all prefix of all strings in L . In practice, when L intends to describe a DES behavior, then a string s ∈ L

can be associated to a (completed or not) task or, in other words, an operational sequence possible in the system, and t

identifies the next-step after s . Any behavior outside L is undesired and, therefore, prevented in the system.

A language L it is said to be regular if, and only if, it can be recognized by a finite state automaton [26] . In industry,

regularity is of interest, as it delimits a class of languages that are suitable for computational processing, i.e., they can be

represented by automata occupying finite memory when stored in a computer [21] .

Finite State Automata (FA) define a simple, intuitive, and powerful framework to formally generate languages. A FA can be

formally defined as a 5-tuple G = 〈 �, Q, q ◦, Q

ω , �→〉 , where: � is the alphabet of events; Q is the set of states; q ◦ ∈ Q is the

initial state; Q

ω ⊆ Q is the subset of marked states (complete tasks); → ⊆Q ×� × Q is the state transition relation.

For two any states q 1 , q 2 ∈ Q , q 1
σ→ q 2 denotes a transition from the state q 1 to q 2 with the event σ ∈ �, and G

s → q

denotes that a string s is possible in G. Two languages can be defined from G: L (G) = { s ∈ �∗ | G

s → q ∈ Q} ; L ω (G) = { s ∈

�∗ | G

s → q ∈ Q

ω } . L (G) is called the generated language and it includes all strings possible in G, while L ω (G) is the marked

language , i.e., the set of strings leading to marked states, in practice associated to complete tasks.

Two FA, A = 〈 �A , Q A , q
◦
A
, Q

ω
A

, �→ A 〉 and B = 〈 �B , Q B , q
◦
B
, Q

ω
B

, �→ B 〉 , can be synchronously composed as A ‖ B = 〈 �A ∪

�B , Q A × Q B , (q ◦
A
, q ◦B) , Q

ω
A

× Q

ω
B

, →〉 , in which:

• (q A , q B)
σ→ (q ′

A
, q ′

B
) , if σ ∈ �A ∩ �B ;

Download English Version:

https://daneshyari.com/en/article/4944182

Download Persian Version:

https://daneshyari.com/article/4944182

Daneshyari.com

https://daneshyari.com/en/article/4944182
https://daneshyari.com/article/4944182
https://daneshyari.com

