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a b s t r a c t

In this paper, we consider the problem of the static output feedback control for singular T–S fuzzy
Markovian jump system with considering the influence of actuator saturation and partly unknown
transition probabilities. Sufficient conditions are obtained to guarantee that the closed-loop is not only
finite time bounded but also dissipative. The controller gain and the estimation of the domain of
attraction can be solved by solving the linear matrix inequalities based optimization problem. Finally,
numerical examples are illustrated for the effectiveness of the proposed method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Unlike switch systems [1], there exhibit switching between sev-
eral subsystems. Many dynamical systems subject to random abrupt
variations can be modeled by Markovian jump system (MJS), which
is a special class of stochastic hybrid systems and initially introduced
by Krasovskii and Lidskii [2]. It has been widely investigated in the
past decades, and a great number of elegant results have been
obtained [3–9]. The singular Markovian jump system (SMJS) has
wide application in many engineering systems. Therefore, it is sig-
nificant to study the problem of singular Markovian system. For
example, H1 control [5,6] and H1 filter [7,8] were demonstrated for
a class of singular Markovian jump system. Long et al. [9] discussed
stochastic admissibility for a class of singular Markovian jump sys-
tems with mode-dependent time delays.

T–S fuzzy system [10–12] has attracted rapidly growing interest in
the past decade, owing to its effective application in many industrial
production processes, especially singular T–S fuzzy system [13,14]. In

[15], Chadli et al. discussed the stability and stabilization for singular
uncertain T–S fuzzy, and new sufficient conditions were obtained.
Considering the stochastic singular fuzzy system, Zhao et al. [16],
designed the H1 filter and Li et al. [17] discussed the problem of H1
control.

In many practical scenarios, it is questionable and costly to
obtain all the precise mode transition information. Thus it is sig-
nificant and challenging to study the cases when the transition
rate matrix (TRM) is partly unknown. Till now, many researchers
have paid attention to study SMJS with partly known TRM, for
example, stability analysis and controller synthesize were dis-
cussed in [17–20]. And in [21], a sliding mode approach was pro-
posed to robust stabilization of Markovian jump linear time-delay
systems with generally incomplete transition rates.

In the aforementioned references, the stability analysis and control
synthesis on fuzzy system focus on Lyapunov asymptotic stability,
which is defined over an infinite time interval. However, in some
practical process, the main attention may be related to the behavior of
the dynamical systems over a fixed finite-time interval, that is finite
time control. Finite time stability admits that the state does not exceed a
certain bound during a fixed finite time interval. In many practical
engineering applications, the finite time control is of practical sig-
nificance, such as biochemistry reaction system, communication net-
work system and robot control system. Recently, the study of finite time
problem has received increasing attention, see for example [22–24].
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Finite-time dissipative control [25] and passive control [26] were dis-
cussed respectively. In [27,28], the problem of finite time H1 filtering
was solved for a class of discrete-time Markovian jump systems with
switching transition probabilities and partly unknown transition prob-
abilities respectively.

On the other hand, in many application systems, actuator
saturation is very ubiquitous. It is a physical phenomenon, and
sometimes it may result in poor performance of the closed-loop
systems. So, it is significant to consider the influence of actuator
saturation. Some nonlinear subject to actuator saturation is com-
plex to deal with, owing to the T–S fuzzy model, a class of non-
linear systems under the saturation nonlinearity can be solved
handily and effectively [13,29,30]. For multiplicative noised non-
linear systems subject to actuator saturation and H1 performance
constraints, fuzzy control problem was discussed in [31].

The study of dissipativity theory has captured comprehensive
attention, since it is provided by using an output–output
description regarding the system energy to study the performance
of many nonlinear systems [32]. Using the T–S fuzzy model, many
complex nonlinear problem can be simplified [33,34]. In [35],
delay-dependent dissipative control for a class of non-linear sys-
tem via Takagi–Sugeno fuzzy descriptor model with time delay
was demonstrated.

In addition, some state variables may be difficult to measure
and sometimes have no physical meaning and thus cannot be
measured at all. In this situation, the static output feedback control
is more suitable for practical application [36]. Based on the LMI
technique, static output-feedback was designed for fuzzy power
system stabilizers in [37]. However, till now, the design of finite
time fuzzy static output feedback controller for singular Marko-
vian jump system subject to actuator saturation and with partly
unknown transition probabilities has not been demonstrated.

Motivated by the above discussion, in this paper, for singular
fuzzy Markovian jump system with partly unknown TRM and
subject to actuator saturation, the problem of finite time dis-
sipative static output feedback control is considered. The con-
tributions can be concluded as follows: (1) sufficient conditions
are obtained to ensure the finite time bounded and dissipativity;
(2) the static output feedback controller and the estimation of the
domain of attraction are solved by LMI-based optimization pro-
blems; (3) examples are given to demonstrate the effectiveness of
the proposed method; and (4) Fig. 5 plots the estimation of
attractions of the three modes.

Notation: Throughout this paper, Rn denotes the n-dimensional
Euclidean space, and Rn�m is the set of real matrices. For AARn�m,
A�1and AT denote the matrix inverse and matrix transpose
respectively. Aþ denotes the generalized inverse matrix of A. λ Að Þ
means the eigenvalue of A. For a real symmetric matrix AARn�n,
A40ðAZ0Þ means that A is positive defined (positive semi-
defined). E �f g denotes the expectation operator. The symbol n

means the symmetric term in a symmetric matrix.

2. Problem formulation

Fix a probability space ðΩ; F;P rtð ÞÞ, and consider a class of SMJS,
which can be described by the following fuzzy model.

Plant rule i: IF ε1 tð Þ is Λi1 and ε2 tð Þ is Λi2 …εp tð Þ is Λip, THEN

E _x tð Þ ¼ Ai rtð Þx tð ÞþBi rtð Þsat u tð Þð ÞþBωi rtð Þω tð Þ;
z tð Þ ¼ Ci rtð Þx tð ÞþDi rtð Þsat u tð Þð ÞþDωi rtð Þω tð Þ;
y tð Þ ¼ Cyi rtð Þx tð Þ;
x tð Þ ¼ϕ tð Þ; iAR9 1;2;…rf g; ð1Þ
where iAR : ¼ 1;2…rf g, r is the number of IF–THEN rules. Λij ðiA
R; j¼ 1;2;…lÞ are fuzzy sets, ε1 tð Þ; ε2 tð Þ;…; εl tð Þ are premise vari-
ables. x tð ÞARn is the state vector, y tð ÞARm is the measurement

output. EARn with rankE¼ rrn, ω tð ÞARι is the disturbance
which belongs to Lι2 0;1½ Þ, and satisfiesZ T

0
ωT tð Þω tð Þrd2; dZ0; ð2Þ

u tð ÞARl is the control input, and sat : Rl-Rl is the standard
saturation function defined as follows:

sat u tð Þð Þ ¼ sat u1 tð Þð Þ;…; sat ul tð Þð Þ½ �T ;
without loss of generality, sat ui tð Þð Þ ¼ sign ui tð Þð Þmin 1; ui tð Þ

�� ��� �
.

Here the notation of sat �ð Þ is abused to denote the scalar values and
the vector valued saturation functions. ϕ tð ÞACn;τ2 is a compatible
vector valued initial function. rt ; tZ0f g is a continuous-time
Markovian process with right continuous trajectories taking
values in a finite set given by S¼ 1;2;…;Nf g with the transition
rates matrix (TRM) Π9 πpq

� �
given by

Pr rtþh ¼ q rt ¼ p
��� �¼

πpqhþo hð Þ; paq

1þπpqhþo hð Þ; p¼ q

(

where h40; limh-0
o hð Þ
h ¼ 0, and πpqZ0, for qap, is the transition

rate from mode p to q at time tþh, which satisfies
πpp ¼ � PN

q ¼ 1;qap πpq, for all pAS.
In this paper, the transition rates or probabilities of the jumping

process are considered to be partly accessed. For example, the TRM
for system (1) may be expressed as

Π ¼

π11 π̂12 … π̂1N

π̂21 π̂22 … π2N

⋮ ⋮ ⋱ ⋮
π̂N1 πN2 … πNN

2
66664

3
77775;

where π̂pq p; qASð Þ represent the inaccessible elements. For
notation clarity, 8pAS, we denote S¼ S pð Þ

k [ S pð Þ
uk with

S pð Þ
k 9 q

��πpq is known for pAS
� �

S pð Þ
uk 9 q

��πpq is unknown for pAS
� � ð3Þ

Moreover, if S pð Þ
k a∅, it can be described as S pð Þ

k ¼ k pð Þ
1 ; k pð Þ

2 ;…; k pð Þ
mp

n o
,

mpAS.
Here k pð Þ

q AZþ , 1rk pð Þ
q rN, q¼ 1;2;…;mp, represents the qth

known element for the set S pð Þ
k in the TRM. Then we denote

π pð Þ
k ¼P

qAS pð Þ
k
πpq.

For notional simplicity, in the sequel, for each possible
rt ¼ pAS, the matrix Ai rtð Þ;Bi rtð Þ;Bωi rtð Þ, Ci rtð Þ;Di rtð Þ;Dωi rtð Þ are
known mode-dependent constant matrices with appropriate
dimensions, and they will be denoted by Api;Bpi and so on.

Using singleton fuzzifier, product inference, and center-average
defuzzifier, the global dynamics of the TS system (1) is described
by the convex sum form:

E _x tð Þ ¼
Xr

i ¼ 1

λi ε tð Þð Þ Ai rtð Þx tð ÞþBi rtð Þsat u tð Þð ÞþBωi rtð Þω tð Þ½ �;

z tð Þ ¼
Xr

i ¼ 1

λi ε tð Þð Þ Ci rtð Þx tð ÞþDi rtð Þsat u tð Þð ÞþDωi rtð Þω tð Þ½ �;

y tð Þ ¼
Xr

i ¼ 1

λi ε tð Þð Þ Cyi rtð Þx tð Þ� �
; ð4Þ

x tð Þ ¼ϕ tð Þ; iAR9 1;2;…; rf g;

where ε tð Þ ¼ ε1 tð Þ; ε2 tð Þ;…; εl tð Þ½ �T , βi ε tð Þð Þ ¼∏p
j ¼ 1Λij εj tð Þ

� �
is the

membership function of the system with respect to the ith
pant rule.

Let λi ε tð Þð Þ ¼ βi ε tð Þð Þ=Pr
i ¼ 1 βi ε tð Þð Þ, then λiðεðtÞÞZ0 andPr

i ¼ 1 λiðεðtÞÞ ¼ 1. In the sequel, we denote λiðεðtÞÞ by λi.
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