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a b s t r a c t 

Online pairwise learning algorithms with general convex loss functions without regulariza- 

tion in a Reproducing Kernel Hilbert Space (RKHS) are investigated. Under mild conditions 

on loss functions and the RKHS, upper bounds for the expected excess generalization er- 

ror are derived in terms of the approximation error when the stepsize sequence decays 

polynomially. In particular, for Lipschitz loss functions such as the hinge loss, the logistic 

loss and the absolute-value loss, the bounds can be of order O (T −
1 
3 log T ) after T iterations, 

while for the least squares loss, the bounds can be of order O (T −
1 
4 log T ) . In comparison 

with previous works for these algorithms, a broader family of convex loss functions is 

studied here, and refined upper bounds are obtained. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Many classical learning tasks can be modeled as learning a good estimator or predictor f : X → Y based on an observed 

dataset { (x t , y t ) } T t=1 of input-output samples from X × Y , where X is an input space and Y ⊆ R an output space. Learning 

algorithms are often implemented by minimizing 1 
T 

∑ T 
t=1 V (y t , f (x t )) over a hypothesis space of functions in various ways 

including regularization schemes [26] . Here V : R 

2 → R + is a loss function used for measuring the performance of a predictor 

f . It induces a local error V ( y, f ( x )) over an input-output sample ( x, y ) ∈ X × Y . For non-parametric regression with Y = R , 

the least squares loss function V (y, a ) = (y − a ) 2 is often used and, for an input x ∈ X and an estimator f , the induced 

local error V (y, f (x )) = (y − f (x )) 2 measures how well the predicted value f ( x ) approximates the output value y ∈ R . For 

binary classification with Y = { 1 , −1 } consisting of the two labels corresponding to the two classes, the misclassification loss 

function V (y, a ) = χ(−∞ , 0) (ya ) generated by the characteristic function of the interval (−∞ , 0) is a natural choice, and the 

induced local error V (y, f (x )) = χ(−∞ , 0) (y f (x )) over a sample ( x, y ) ∈ X × Y equals 1 when the sign of f ( x ) and y correspond 

to the two different labels in Y (that is, yf ( x ) < 0), while V (y, f (x )) = 0 when they correspond to a same label with yf ( x ) 

≥ 0. But the characteristic function χ(−∞ , 0) is not convex, and the optimization problems involved in the related learning 

algorithms are not convex. For designing efficient learning algorithms, χ(−∞ , 0) may be replaced by a convex function φ : 

R → R + , leading to convex optimization problems involving the local error V (y, f (x )) = φ(y f (x )) . One choice of φ is the 

hinge loss φh (v ) = max { 1 − v , 0 } used in the classical support vector machines for solving binary classification problems 
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[26] . The above learning framework has been well developed within the last two decades [9,26] . It might be categorized as 

“pointwise learning”, as the local error V ( y, f ( x )) takes only one sample point ( x, y ) ∈ X × Y into account. 

In this paper, we study another important family of learning problems categorized as “pairwise learning” in which the 

local error takes a pair {( x, y ), ( x ′ , y ′ )} of two samples from X × Y into account. Its learning tasks include ranking [1,8] , 

similarity and metric learning [5,28] , AUC maximization [34] , and gradient learning [19,20,30] . The goal of pairwise learning 

is to learn a good predictor f : X 2 → R predicting a value f (x, x ′ ) ∈ R for each input pair ( x, x ′ ) ∈ X 

2 according to various 

tasks. To measure the learning performance of a predictor f , we use a loss function V : R 

2 → R + to induce the local error 

V ( r ( y, y ′ ), f ( x, x ′ )) over two input-output samples ( x, y ), ( x ′ , y ′ ) ∈ X × Y , where r : Y × Y → R is a function, called reducing 

function , chosen according to the learning task. The reducing function r is an essential concept making pairwise learning 

different from pointwise learning. We demonstrate how to choose the reducing function r by the following examples. 

1. For the least squares regression with Y = R and V (y, a ) = (y − a ) 2 , a sample ( x, y ) is drawn from a probability measure 

and the expected value of y ∈ R given x ∈ X equals f ∗( x ), the value of the conditional mean (regression) function f ∗ at x . So 

y − y ′ = f ∗(x ) − f ∗(x ′ ) in expectation and we choose the reducing function r : Y × Y → R as the output value difference 

r(y, y ′ ) = y − y ′ . Then the local error V (r(y, y ′ ) , f (x, x ′ )) = 

(
y − y ′ − f (x, x ′ ) 

)2 
measures how well the predicted value f ( x, 

x ′ ) for an input pair ( x, x ′ ) approximates f ∗(x ) − f ∗(x ′ ) via the output value difference y − y ′ . 
2. For metric learning in binary classification with Y = { 1 , −1 } , we aim to learn a metric f such that a pair ( x, x ′ ) of in- 

puts (objects) from the same class ( y = y ′ ) are close to each other while a pair from different classes ( y 	 = y ′ ) have 

a large distance f ( x, x ′ ). A typical choice of the reducing function r : Y × Y → R is given by r(y, y ′ ) = 1 if y = y ′ and 

−1 otherwise [5] . The local error induced by the convex loss function V (y, a ) = max { 0 , 1 + ya } is V (r(y, y ′ ) , f (x, x ′ )) = 

max { 0 , 1 + r(y, y ′ ) f (x, x ′ ) } . It gives a large local error 1 + f (x, x ′ ) if the distance f ( x, x ′ ) between the input pair ( x, x ′ ) 
from the same class ( y = y ′ ) is large. 

3. For ranking in a regression framework with Y = R , we aim to learn a good ordering f between objects (inputs) based on 

their observed features such that f ( x, x ′ ) < 0 if x is preferred over x ′ meaning that the ranking labels satisfy y < y ′ . A 

typical choice [21] of the reducing function r : Y × Y → R is given by r(y, y ′ ) = sign (y − y ′ ) , the sign of y − y ′ . Then the 

local error induced by the hinge loss φh is V (r(y, y ′ ) , f (x, x ′ )) = φh ( sign (y − y ′ ) f (x, x ′ )) . 

Batch learning and online learning are two kinds of learning algorithms. The former uses an entire dataset to perform 

learning tasks, while the latter uses the dataset in a stream way. For batch learning algorithms in the pairwise learning 

framework, theoretical error and robustness analysis have been carried out in [1,5,7,8,21] . One challenge in conducting anal- 

ysis in pairwise learning is that pairs of training samples are not independent. For example, given the independently and 

identically distributed (i.i.d.) samples { z t = (x t , y t ) } T t=1 
, a batch algorithm for pairwise learning possibly involves a target 

function 

T (T − 1) 

2 

∑ 

1 ≤i< j≤T 

V (r(y i , y j ) , f (x i , x j )) + pen ( f, λ) , (1.1) 

where pen( f, λ) ≥ 0 is some regularization term used to avoid overfitting. In this case, local errors V ( r ( y i , y j ), f ( x i , x j )) and 

V (r(y i , y j ′ ) , f (x i , x j ′ )) are indeed dependent. Thus, standard techniques for classification and regression cannot be directly 

applied, and new tools such as U-statistics [8] or algorithmic stability [1] are necessary for the analysis. 

In spite of their good theoretical guarantees, batch algorithms for pairwise learning may be difficult to implement for 

large-scale learning problems in practice. Indeed, even for the simpler case of pointwise learning, the computational com- 

plexity of batch algorithms with many loss functions is of order O ( T 3 ). Moreover, batch algorithms for pairwise learning 

suffer from extra computational burden of optimizing an objective defined over O ( T 2 ) possible sample pairs. 

In practical applications, online learning may be more favorable, due to its scalability to large datasets and applicability 

to situations where the samples are collected sequentially. Theoretical results for online learning in classification and regres- 

sion have been well developed (see for example [2,6,18,22,24,31] and references therein), but there is relatively little work 

for online learning in pairwise learning. Recent research of this direction can be found in [15,27,32] . In particular, online 

pairwise learning in a linear space was investigated in [15,27] , and convergence results were established for the average of 

the iterates under the assumption of uniform boundedness of the loss function, with a rate O (1 / 
√ 

T ) in the general convex 

case, or a rate O (1/ T ) in the strongly convex case. Online pairwise learning in a RKHS with the least squares loss was studied 

in [32] where bounds in probability were derived for the excess generalization error. 

In this paper, we improve the analysis of online pairwise learning (see Algorithm 1 in the next section) in a RKHS 

with general convex loss functions. Our main purpose is to develop convergence results for such learning algorithms using 

polynomially decaying stepsize sequences. Unlike [15,27] , we do not assume that the iterates are restricted to a bounded 

domain or the loss function is strongly convex. In particular, we will provide bounds for the expected excess generalization 

error, under a mild condition on approximation errors and an increment condition on the loss. For Lipschitz loss functions 

such as the hinge loss and the logistic loss, our bounds can be of order O (T −
1 
3 log T ) , while for the least squares loss, our 

bounds can be of order O (T −
1 
4 log T ) . For general convex loss functions, previous error analysis techniques dealing with the 

least squares loss in [32] , which rely on integral operators, do not apply and are replaced by tools from convex analysis and 

Rademacher complexity. The key to our proof is an error decomposition, which enables us to study the weighted excess 

generalization error in terms of the weighted average and the moving weighted average. The novelty lies in an estimate 
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