
A sparse unmixing model based on NMF and its application in
Raman image

Yifei Xu a,d, Shuiguang Deng a,c,n, Xiaoli Li b,c, Yong He b,c

a College of Computer Science and Technology, Zhejiang University, PR China
b College of Biosystems Engineering and Food Science, Zhejiang University, PR China
c Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, PR China
d Department of Biosystems & Agricultural Engineering, Michigan State University, USA

a r t i c l e i n f o

Article history:
Received 10 November 2015
Received in revised form
25 February 2016
Accepted 18 March 2016
Communicated by Deng Cai
Available online 27 May 2016

Keywords:
Raman imaging
Sparsity
Plant cell wall

a b s t r a c t

Spectral unmixing is a critical issue in multi-spectral data processing, which has the ability to determine
the composition and the structural characteristics of the Raman image. Most of current unmixing
methods work well to explore the materials in an ideal scenario. However, both the noise and the
requirement of the prior knowledge limit their practical application. Thus, we propose a sparse method
called to unmix spectra and apply it to explore the elucidate structural and spatial distribution of the
plant cell well. GRSRNMF utilizes the blind source separation technology based on NMF to determine the
basis elements (abundances) and their corresponding components (endmembers) without prior
knowledge. GRSRNMF incorporates graph relationship and L1/2 regularizer to improve the robustness
and effectiveness. Besides, two proper indicators are designed to assess the unmixing method for Raman
image when the standard spectrum library does not exist. Experiments are conducted on simulated
datasets and the real-world Raman image to evaluate the performance of the proposed methods from
various aspects. Experimental results illustrate that the proposed method favors sparsity and offers
improved estimation accuracy compared to other methods.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Raman imaging, as a new hyperspectral imaging[1–3], has been
used to illustrate changes of molecular composition in a cell wall
[4,5]. In the field of plant science and bioinformatics science,
gaining each composition in a cell wall is a foundation work for
further analysis. Unfortunalty, since the complex structure and
interference between the components, it is still a critical issue to
distinguish the in an efficient way. Traditional Raman image ana-
lysis methods make use of the peak intensity or peak integration
to determine the components of the cell wall. However, these
methods are helpless in case that some of the components are
mixed. Recently, inspired by the hyperspectral unmixing, some
efforts have been made to unmix Raman image applied in various
fields [6–8], but there are still some challenges to be addressed: 1)
pure components (endmembers) and their basis elements (abun-
dances) are unknown. Moreover, for Raman image analysis, there
is no standard spectrum library as a reference. Thus, it is required

to unmix Raman image without any prior information and eval-
uate the performance with new indicators. 2) Similarity of the
different materials with overlapped spectra limits the performance
of the Raman unmixing. Hence, it is essential to improve the
capacity of separating different materials.

To address the above challenges, we first propose a new
unsupervised and sparse method called Graph-Regularized Sparse
Recursive NMF (GRSRNMF) and two new metrics for spectral
unmixing. Experiments are conducted on synthetic datasets and
the real Raman image to evaluate its performance, and the results
show that it outperforms other related methods on several
metrics. As a summary, the main contributions can be listed as
follows: 1) a sparse and unsupervised method based on NMF
called GRSRNMF is proposed to unmix the components in a Raman
image. Graph relationship and L1/2 regularizer are incorporated
into GRSRNMF to solve the overlapped spectra problem with a
significant performance improvement. Compared with other state-
of-art approaches, the proposed method can find the each com-
ponent ideally without prior information, and cope with the
situation that all the components are mixed in a random way.
Through the complexity and sparsity analysis in Sections 3 and 4,
we can find that our method works effectively in a reasonable
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running time. 2) GRSRNMF determines the basis elements and
their corresponding components in sequence, which is in the
opposite order of the traditional hyperspectral unmixing method
[9]. By doing so, the basis elements can verify the accuracy of the
estimated components and vice versa. 3) Two proper metrics are
designed when the standard spectrum library is absent to estimate
the performance specified for Raman image.

The remaining of this paper is organized as follows: Section 2
gives an overview of the related work. Section 3 presents the detail
of GRSRNMF. The datasets, parameter settings, and evaluation
metrics are shown in Section 4. Section 5 presents the experi-
ments and discusses the performance of GRSRNMF and the com-
parative methods. Section 6 concludes this paper and presents the
future work.

Notations. The set of m-by-n real matrices is denoted Rm�n; for
AARm�n, Ai: is the ith row of A, Ai: is the ith column of A and Aij is
the entry at position (i,j); for bARm, we denote bi as the ith entry
of b. The set Rm�n with component-wise nonnegative entries is
denoted Rm�n

þ ; The L0 of vector x denoted ‖x‖0 is the cardinality of

the set fi xia0gj ; The L2 of vector x denotes ‖x‖2 ¼
ffiffiffiffiffiffiffiffiffiffiffiP

x2i

q
; the L1 of

vector x is ‖x‖1 ¼
P

ijxij. The L1/2 of vector x is ‖x‖2 ¼
P

i x
1=2

�� ��; the
Frobenius norm of matrix A is ‖A‖2F ¼

P
ija

2
ij .

2. Related work

In general, unmixing methods work well under the assumption
that the points conform to the Linear Mixture Model (LMM). Most
of the current methods employ LMM to approximately describe
the hypercube under Abundance Non-negativity Constraint (ANC)
and Abundance Sum-to-one Constraint (ASC)[10]. Consequently,
the task of unmixing problem is to factorize a high-dimension
matrix into two low-dimensional matrices subjected to ANC and
ASC. The algorithms for unmixing hypercube include Pixel Purity
Index (PPI) [11], N-FINDR [12], Vertex Component Analysis (VCA)
[13], Minimum Volume Enclosing Simplex (MVES) [14] and Auto-
matic Target Generation Process (ATGP) [15]. These approaches
work better only when assuming the pure pixels exists or at least
p-1 (p stands for the number of endmember) spectral vectors in
a pixel.

Since the assumption of pure pixels is not reliable, the blind
source separation (BBS) approaches are developed from the per-
spective of statistics to deal with this issue [16]. Independent
Component Analysis (ICA) explores an available transformation
under the assumption that all the endmembers are statistical
independent [17,18]. If the endmembers are independent, ICA
provides the correct unmixing since the minimum of the mutual
information corresponding to and only to independent sources
[17]. Except for this demerit, the ANC constraint is also disabled in
ICA. Besides, the methods based on Bayesian framework incorpo-
rate ANC and ASC directly in the prior distribution and parameter,
and can provide a heuristic and global solution of hyperspectral
unmixing problems as much as possible [19]. Typically, the
hyperparameters and parameters in the joint posterior distribu-
tion resort to the sample generated algorithms-Markov chain
Monte Carlo algorithm. The advantage of this sample method is
that it can converge on the joint distribution over the parameters
and hyperparameters. However, the computational complexity is
still high despite that several available measures have been made
to improve this situation [20,21].

As another significant BBS approach, Nonnegative Matrix Fac-
torization (NMF) provides a part-based representation of the data,
making the decomposition matrices more intuitive and inter-
pretable [22–24], which is in accordance with the principle of
hyperspectral image unmixing. However, NMF is disabled to

separate all the components correctly due to the non-uniqueness
of the solution [25,26]. For improving the performance of NMF, a
variety of constraints is taken into account [27,28]. Nonnegative
sparse coding incorporates sparse coding as sparsity constraint
into NMF, whereas smoothness constraint is considered in [29].
These algorithms, however, are not designed for hyperspectral
data analysis and, thus, fail to make full use of the characteristics
of hyperspectral data, which compromises the performance when
being applied into this domain. From a convex geometric point of
view, minimum-volume-constrained NMF (MVCNMF) [30] utilizes
the minimum volume constraint, which drives the virtual end-
members to enclose the data cloud. Except the above constraints,
other constraints are taken into account to make the problem
more well-posed, e.g., sparsity of the abundance matrix and pie-
cewise smoothness of spectral signals [31], orthogonally [32], and
sum-to-one the abundance [22]. Still, when the rank is modified,
the methods based traditional NMF need to re-compute the
solutions and become more time-consuming.

In this paper, we propose GRSRNMF, a new variant of NMF that
overcomes the above demerits. As used in NMF, Lp regularizer is
introduced to GRSRNMF to improve the performance. The L0 reg-
ularizer means the number of zero elements in the basis elements
matrix to yield the sparsest result. However, the solution of the L0
regularizer is an NP-hard problem. The L2 regularizer generates
smooth but not sparse result. For L1 regularizer, the sparsity
property and its influence on the image unmixing have not been
thoroughly investigated.

Therefore, we incorporate L1/2 regularizer into GRSRNMF to
enforce the sparsity of the abundance [33]. It is implemented
through the multiplicative updating algorithm, which is an itera-
tive application of a rescaled gradient descent. In virtue of sparsity,
GRSRNMF leads to a more satisfactory result. In fact, all of the
sparse constraints only consider the Euclidean structure of the
data space that cannot be uniformed filled up by the hypercube.
These hypercube data can be regarded as sampled data from or
near a submanifold of an ambient space. Therefore, it is necessary
to consider the intrinsic manifold structure while performing
Raman image unmixing. Inspired by the manifold learning and
sparse constraints, we then incorporate the manifold structure
(graph relationship), leading to improved performance on several
indicators.

3. Graph-Regularized Sparse Recursive NMF

3.1. GRSRNMF

In general, NMF can be described as follows: given a non-
negative input matrix MARm�n

þ and an integerrð1rro minðm;nÞÞ,
find two nonnegative metrics UARm�r

þ and VARr�n
þ be the solu-

tion of the following minimization problem.

min
V ARr�n ; UARm�r

‖M�UV‖2F

such that UZ0;VZ0
ð1Þ

Due to the NP-hardness, practical algorithms cannot be
expected to find provably optimal global solution in a reasonable
time. However, with the help of the theorems Perron-Frobenius
and Eckart-Young, it is easy to find a globally optimal rank-1 NMF
in polynomial time. Specially, the Perron-Frobenius theorem
implies that the dominant left and right singular vectors of a
nonnegative matrix are nonnegative, while the Eckart-Young
theorem states that the outer product of these dominant sin-
gular vectors is the best possible rank-1 approximation in the
Frobenius norm.
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