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a b s t r a c t

In different areas of knowledge, phenomena are represented by directional-angular or periodic-data;
from wind direction and geographical coordinates to time references like days of the week or months of
the calendar. These values are usually represented in a linear scale, and restricted to a given range (e.g.
½0;2πÞ), hiding the real nature of this information. Therefore, dealing with directional data requires
special methods. So far, the design of classifiers for periodic variables adopts a generative approach based
on the usage of the von Mises distribution or variants. Since for non-periodic variables state of the art
approaches are based on non-generative methods, it is pertinent to investigate the suitability of other
approaches for periodic variables. We propose a discriminative Directional Logistic Regression model
able to deal with angular data, which does not make any assumption on the data distribution. Also, we
study the expressiveness of this model for any number of features. Finally, we validate our model against
the previously proposed directional naïve Bayes approach and against a Support Vector Machine with a
directional Radial Basis Function kernel with synthetic and real data obtaining competitive results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Several phenomena and concepts in real life applications are
represented by angular data or, as is referred in the literature,
directional data. Some examples of directional information are the
wind direction as analyzed by meteorologists, magnetic fields in
rocks studied by geologists, geographic coordinates, among others
[1]. Also, some entities are usually referenced in an angular
manner; gynecologists denote the location to perform a biopsy,
when performing a colposcopic screening, using the angle formed
by the vertical axis of the cervix. Another example can be found in
the area of computer vision, where color is often defined in
cylindrical spaces like the Hue-Saturation-Value (HSV) color space.
However, directional information is not constrained to scientific
contexts; on a daily basis we naturally use angular variables. For
example, time is usually represented by hours, days of the week,
day of the month, season, etc. This reference system is cyclic by
nature.

Directional variables are usually encoded as a periodic value in
a given range (e.g. [0, 2π), [0°, 360°)). This work focuses merely in
this representation of directionality, where an angular variable is a
real-value number with periodicity defined by a range. However,
directional data can also be found in other representations, such as

discrete categorical values ordered by a circular relation [2]. Also,
some literature makes use of histograms which lie in a circular
space instead of the linear one.

Working effectively with directional data requires dealing with
techniques that are aware of the angular nature of the information
[1]. For example, 0 and 2π are indeed the same angle and their
average is not π but 0. In this sense, directional statistics concerns
the problems derived from using traditional linear statistics with
this type of data [1]. Even visualization of this type of data requires
different representations to illustrate its periodic behavior (e.g.
rose diagrams and circular histograms). In order to formalize the
definition of a directional function, consider the predicate dir
defined in Eq. (1), where N is the set of integers and
B¼ ftrue; falseg:

dir : N⟶B

dirðiÞ ¼ true; iff the ith feature is directional ð1Þ

Wewill say that the function f, with domain in Rn, is directional

with period P
!

(i.e. the feature in the position i has period P
!

i), if
and only if Eq. (2) holds, where non-directional features are

assumed to have infinite period (i.e. :dirðiÞ ) P
!

i ¼1þÞ:

f ð θ
!

Þ¼ f ð θ
!

þ k
!

○ P
!Þ; k

!
AZn ð2Þ

Here on, we will restrict the periodicity of the directional
values to Pi¼1, without loss of generality.
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Supervised learning can be understood as the process of
learning a function f based on the so-called training data that
comprises examples of the input vectors and their corresponding
target values [3]. In this work, we are interested in the learning
task known as classification, where the target can take a finite
number of values. These values are usually denoted as classes or
labels and the input vector defines a set of features that describe
objects in the domain of the function. As the result of a supervised
classification task, we obtain a classifier, which is used to assign a
class to an object that has not been seen at the training stage. The
ability to correctly label new instances is known as generalization
[3]. Traditional models that do not take into account directionality
may suffer drop of generalization in areas near to the period of the
function. Furthermore, the function may return different decisions

for different Δþ k
!

○ P
!

, k
!

AZn, and a fixed ΔARn, despite all of
them semantically represent the same angle.

In this work we propose a binary classifier aware of the
directional constraint. The rest of this paper is organized as fol-
lows. Section 2 describes related work in the area of directional
statistics and learning. Sections 3–5 detail the proposed model, its
expressiveness and the optimization strategy, respectively. Section
6 summarizes the performed experiments to assess the relevance
of the proposed model and, finally, Section 7 summarizes some
conclusions and future work.

2. Related work

Most different types of problems and approaches in Machine
Learning can be broadly defined as a classification, regression or
clustering tasks. Classification and Regression are the most com-
mon supervised learning tasks. On the other hand, clustering is
probably the best known unsupervised learning task, where the
objective is to group data into non predefined categories based on
some similarity criterion.

Previous attempts to address learning tasks with directional
data have been carried out in each of the aforementioned areas.
Most of them take advantage of circular distributions (such as von
Mises and von Mises–Fisher). For instance, Banarjee et al. [4]
proposed a generative mixture-model approach for clustering
directional data using the von Mises–Fisher distribution. More-
over, they conclude that the spherical k-means is a special case of
the mixture of von Mises–Fisher model. Fitting mixtures of
angular distributions have been separately studied by Mooney
et al. [5] and Mardia et al. [6].

Regression scenarios with directional data have been studied in
several contexts [7–9]. Xu and Schoenberg [9] proposed a kernel
regression method based on the von Mises distribution. Their
method was used to discover the relationship between a single
directional explanatory variable (wind direction) and a real-valued
linear response variable (total area burned per day in wildfires).
Fisher and Lee [7] studied the regression problem where the
predictive variables are linear and the model outcome is direc-
tional. Their work also assumes that angular observations follow
von Mises distributions and focuses on the estimation of the dis-
tribution parameters. Finally, Kato et al. [8] addressed the circular–
circular problem, wherein both, predictive and target observations,
have a circular nature.

Circular ordinal regression is an intermediate problem in this
area, which lies between regression and classification. It considers
a discrete number of labels which preserve a certain circular order.
Devlaminck et al. [2] proposed two methods to solve this problem.
The first one is an SVM variation, and the second method trans-
forms the circular ordinal regression problem into multiclass

classification. However, the directionality concerns in [2] are
focused on the model outcome rather than on the feature space.

In the area of directional classification, different approaches
have been considered: from Discriminant Analysis [10,11] to gen-
erative models [1,12,13]. SenGupta and Roy [14] proposed a
distance-based classification rule using the chord-length between
two points on the circle to classify unidimensional data. In more
recent work, SenGupta and Ugwuowo [15] developed a multi-
dimensional method for binary classification using directional
data; they studied data on torus (two directional variables) and
cylinder (one linear variable and one directional variable). Their
approach has the limitation that it assumes as known the prob-
abilities of misclassification [15].

Kirby and Miranda [16] proposed a variation on the classic
feed-forward neural network by including the notion of a circular
node, able to store and transmit angular information. In fact, their
node is an abstraction for the combination of a pair of coupled
nodes, whose combined values are constrained to lie on the unit
circle. However, their solution is not invariant to the same inputs
at different periods, namely, a pair of coupled nodes may return
different responses to the same angular input. Furthermore, their
model requires to manually define the hybrid architecture.

Finally, adaptions to generative models were studied in the
past. First, Zemel et al. [13] extended the Boltzmann machine to
consider cyclic units. On the other hand, López et al. proposed a
directional naïve Bayes formulation [1,12]. Their contribution
involves using the von Mises and von Mises–Fisher distributions
for the directional variables instead of the classic Gaussian dis-
tribution. The effectiveness of this method relies on the indepen-
dence assumption of the features and the adequacy of the von
Mises distribution to model the behavior of the directional
features.

In this work, we propose a Directional Logistic Regression, the
discriminative counterpart to the Naïve Bayes model, which does
not make assumptions on the distribution of the input data.

3. Directional logistic regression

Generative classifiers aim to model the joint probability pðx; yÞ,
where x and y respectively denote the input and output variables.
Traditional generative models would then make their predictions
by choosing the label y that maximizes pðx; yÞ, computed using
Bayes rules [17]. Instead, discriminative classifiers model the
posterior probability pðyjxÞ. This computation is done in a direct
manner or by learning a map from inputs x to the class labels [17].

As we have shown in Section 2, previous attempts to design
classifiers for periodic data adopted a generative approach based
on the von Mises distribution or variants [1]. Since state of the art
approaches are based on non-generative methods for non-periodic
variables [18], in this work we propose a discriminant approach to
classify directional data. Our contribution stands as a directional-
aware version of the Logistic Regression [19], which is the dis-
criminant counterpart of the naïve Bayes classifier, previously used
to address this problem. This relation is known as a Generative-
Discriminative pair [17].

Eq. (3) defines the Directional Logistic Regression (dLR) model.
This model can be understood as a Logistic Regression with a
mapping from the original angular space to a linear one. As we
show in Section 5, this mapping is learned simultaneously with
the feature coefficients. Hereinafter, the two possible labels belong
to f0;1g, and n is the number of features:

f ðθÞ ¼ 1
1þe�k�hðθÞ
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