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ABSTRACT

Given the increasingly stringent emission regulations, an accurate model of emission prediction is
required for the aftertreatment systems of diesel engines. For example, the selective catalytic reduction
system can realize higher accuracy emission control if the mass of nitrogen oxides (NOx) is known. Given
its simplicity, convenience, and effectiveness, the method of data-driven modeling has been widely
researched and considered a primary method to estimate the NOx mass before it reaches the after-
treatment device of a diesel engine. To fully use the known engine operating data and therefore improve
the prediction accuracy, this study proposes and develops a general linear and nonlinear auto-regressive
model with exogenous inputs (GNARX) for NOx prediction. A recursive least square algorithm with
forgetting factor is given to estimate the model parameters, and a new simulated annealing based
pruning algorithm is developed to identify the model structure. The proposed methods are first used to
model the simulation and engineering data to validate their effectiveness and superiority in comparison
to the conventional methods. Based on gray relational analysis, the main factors that influence NOx
formation, such as the net engine torque, turbo speed, and accelerator pedal position, are then deter-
mined as the inputs for modeling the NOx emission of the diesel engine. The results show that the
modeling and prediction accuracy of the GNARX model are higher than those of other models, which

indicates that the GNARX model is feasible to predict NOx emission.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Given the growing environmental concerns and increasingly
stringent emission regulations, the diesel engines can no longer
meet the requirements only by relying on in-engine purification.
Studies have shown that it is challenging for diesel engines alone
to achieve nitrogen oxide (NOx) emission levels to satisfy the
increasingly strict emission standard [1]. Thus, exhaust gas after-
treatment techniques are widely used for most diesel engine-
powered vehicles [2-4]. The selective catalytic reduction (SCR),
one of the most promising aftertreatment techniques, has been
shown to be capable of reducing more than 90% of the NOx
emission and is chosen as a more feasible solution to the NOx
reduction of diesel engines in China [5]. Although the formation of
NOx and chemical reaction of SCR have been elaborated in pre-
vious studies [6-8], the control of urea injection for SCR remains a
great challenge in practice because of its complicated dynamics
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and limited feedback information. Several approaches to urea
injection control have been proposed [9,10], and the on-time
adjustment of urea injection based on real-time NOx emission is
particularly important in practice.

Several methods can be used to estimate the amount of NOx
that reaches the aftertreatment device [11]. (a) The NOx emitted
by a reference engine can be directly mapped as a function of
rotation speed and torque implemented as a series of look-up
tables [12]. (b) A physical-based model, which has been proposed
by engine experts, can be used [13]. (c) The NOx emission in the
exhaust gases can be directly measured [14]|. However, given the
complexity of engine behavior, the method of direct engine
mapping, which extends the engine-map calibrated under sta-
tionary condition to the transients, is usually not accurate enough
to estimate the NOx mass. Incorporating experts’ deeper knowl-
edge of the physics of the engine and the chemism of emission
behavior, physical-based models compensate for the above-
mentioned weakness of direct engine maps. As such, physical-
based models are widely used [15,16]. Nevertheless, physical-
based models usually require huge computational power and
significant development time and are very specific (i.e., one model
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only for one type of engine). For direct NOx measurement, the
technology to produce low-cost, precise, and drift-free NOx sen-
sors is still under development [17]. Moreover, literatures have
shown that most onboard NOx sensors are significantly cross-
sensitive to ammonia [18-20],which poses another difficulty for
NOx emission measurement.

Data-driven modeling is another method to predict NOx
emission and presents several advantages. First, unlike physical-
based models, which depend on expert knowledge of the system,
data-driven models require low human intervention because they
can be automatically generated from process data [21]. Therefore,
compared with physical-based models, data-driven models can
save much time and money for model development [22]. More
importantly, data-driven models can handle both steady and
dynamic data [23]. Given these benefits, data-driven models are
widely used in many fields [24-27] and are also successfully
applied in the field of diesel engines. Burke et al. [28] used the
parametric Volterra series calculated from dynamic measurements
to model various gaseous emission species from a multiple-
cylinder diesel engine and assessed the predictive performance
over the New European Driving Cycle. Antory [29] applied a data-
driven monitoring technique to diagnose air leaks in an auto-
motive diesel engine and developed the data-driven diagnostic
model using measurement signals taken from sensors in a modern
automotive vehicle for condition monitoring purposes. Formentin
et al. [30] proposed a data-driven technique to deal with a mul-
tivariable fixed-order controller design and validated the effec-
tiveness of the method by numerical comparison with other
techniques on a benchmark simulation example and practical test
on the airpath control of a real diesel engine. Svard et al. [31]
combined a set of general methods for model-based sequential
residual generation and data-driven statistical residual evaluation
into an automated design methodology and utilized it to create a
complete fault detection and isolation system for an automotive
diesel engine.

In the present study, a data-driven time series model is con-
sidered for NOx emission modeling. To account for the two factors
of the NOx emission of diesel engines (i.e., one is the dynamic and
nonlinear property of the system, and the other is the knowledge
of a part of the system inputs), a general expression for linear and
nonlinear auto-regressive model with exogenous inputs (GNARX)
is proposed and applied to the prediction of the NOx emission of
diesel engine, which has good performance in modeling and
predicting nonlinear system data and can fully exploit known
information [32,33]. Moreover, the improvement of parameter
estimation and structure identification makes the GNARX model
superior to other models. Finally, with the properly chosen model
inputs, the GNARX model obtains high modeling and prediction
accuracy of NOx emission and can therefore provide dependable
data feedback for the SCR system to achieve a closed-loop control
of urea injection.

The rest of the paper is organized as follows: In Section 2, the
model expression, parameter estimation, and structure identifi-
cation methods of the GNARX model are presented. In Section 3,
the simulation and engineering data are applied to verify the
superiority of the proposed parameter estimation and structure
identification algorithms. In Section 4, the application of the model
in predicting practical NOx emission is discussed and compared
with several data-driven models to validate its effectiveness.
Finally, in Section 5, a summary and some conclusive remarks are
provided.

2. Description of the GNARX model
2.1. Model expression

According to the modeling strategy of time series analysis, the
general linear and nonlinear auto-regressive model (GNAR) takes a
zero mean white noise {a,} as input to the system [33,34]. When
one of the exogenous inputs {u,} is known, the GNAR model is
convert into the GNARX model with a single exogenous input.

Suppose the system has two exogenous inputs, u; and v,, the
GNANX model with double inputs is used as shorthand for GNARX
(PI T Ty NMw1, NMw,... nw,p; My, NMy2,.. nu,p; Ny1, Ny2,... nv,p)‘
which is expressed as follows:
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where x;; (i=1, 2,..., p) is the ith-order term; x;; (j=1,2,..., i) is
the jth-order transitional term in the derivation process of x;;; x;.
i1(j) is the jth element of vector x.;1; w,_; is the observation at
time t—1i; u;_,,_; is the exogenous input u, at time t _ 7, _i; V¢_v_;
is the exogenous input v, at time t—17, —i; a,_; is the white noise at
time t—i, i=1, 2,..., n; 7, and 7, are the input delay of u; and v,,
respectively; 6(i;), 6(i1,iz),... are the model parameters; p is the
model order; ny; (j=1, 2,..., p) is the memory step of the jth-order
term of output {w¢}; n,jand n,; (j=1, 2,..., p) are the memory step
of the jth-order term of input {u,} and input {v.}, respectively.

Similarly, Eq. (2) can also be generalized into multi-input sys-
tems, which need not be repeated here.

2.2. Parameter estimation

The forgetting factor recursive least square (FFRLS) is applied to
the parameter estimation for the GNARX model [35], which is
appropriate for time varying system identification.

Using the GNARX model with double inputs indicated in Eq. (2)
as example, the FFRLS algorithm for the parameter estimation of
GNARX is deduced as follows:
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