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a b s t r a c t 

In today’s Internet, the shortest path tree (SPT) construction is an important issue in data 

exchange. To forward a data packet, each router uses routing protocols and link state infor- 

mation to identify the shortest paths from itself to other routers, which yields the shortest 

path tree. In reality, the network topology often varies over time. In existing studies, the 

locally affected nodes are identified and the shortest paths are recomputed so as to update 

the SPT. However, when the network size becomes large, the process of reconstructing the 

shortest paths for the affected nodes is very time consuming. Herein, we propose an adap- 

tive amoeba method to build SPT in dynamic graphs. The proposed method is illustrated 

using a three-step procedure. First, we generalize the original Physarum model to enable 

it to have the ability to find the shortest paths in directed graphs. Secondly, the Physarum 

model is further extended to construct the shortest path tree when there are multiple sink 

nodes. Finally, we demonstrate that the developed method is capable of reconstructing the 

SPT by adapting the tube flow when link weight changes occur. Different from previous 

methods, the proposed algorithm is capable of identifying and recomputing the shortest 

paths for the affected nodes as well as maintaining the original paths for the unaffected 

vertices spontaneously. We demonstrate the performance of the proposed algorithm by 

comparing it with the Label Setting algorithm and Dijkstra algorithm in four randomly 

generated graphs. The computational results suggest the most appropriate algorithms to 

be used in different scenarios. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

In today’s networks, there is a growing demand for high-speed data exchange. To satisfy end-user demand in a large 

routing area, it is highly desirable to route data packets in a timely and efficient manner. Typically, a data packet is for- 

warded by a router through a forwarding table. To build the forwarding table, routing protocols, e.g., IS-IS [35] , and Open 

Shortest Path First (OSPF) [26] , are utilized to disseminate the link state information (link costs, link up or down) among the 

routers, thus enabling the routers to have an intact picture of the network topology. Using the link costs, each router runs 
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the shortest path finding algorithms, e.g., Dijkstra algorithm [13] , to identify the minimum cost paths from itself to other 

routers in the same area, yielding the shortest path tree (SPT). The computed SPT is then utilized to build the forwarding 

table, which encompasses important information for forwarding a data packet to the target node along the minimum cost 

path. 

However, in realistic scenarios, the network topology in a routing region usually varies over time [16,38] , e.g., a new 

router is added to the network, a subnetwork fails, link cost increases, or a node fails. In networks, beaconing is used to 

detect all the network topology changes [39] . Basically, beaconing periodically sends messages across the network and de- 

tects the failures after a few missed messages. Afterwards, the identified changes are broadcast to all the routers in the 

same area. After each router is notified of this change, it updates the network topology in its data structure and recomputes 

the SPT. A simple way to update the SPT is to recalculate the shortest path from itself to all the other nodes one by one, 

thus reconstructing the entire forwarding table. Most of today’s routers in the market update SPT by removing the existing 

SPT from each router and constructing a new one from scratch using widely recognized static algorithms, i.e., Dijkstra algo- 

rithm [13] . However, such a computation of the entire SPT consumes a large amount of time, which might result in serious 

downstream delays throughout the network, thus preventing other vital routing functions from being executed. To say the 

least, even if there are some changes in the link state, the structure of the new SPT does not vary significantly from the 

old one. Nevertheless, static algorithms that compute SPT from scratch incur unnecessary cost, and they do not utilize the 

information contained in the outdated SPT. Thus, it is desirable to develop dynamic algorithms that are able to update the 

SPT efficiently so as to process link state updates. 

Mathematically, we formulate the SPT problem in a dynamic environment as follows: In a given network G ( V , E , L ), 

where V denotes the set of nodes, E represents the set of links, and L is the nonnegative link weights. With time, some 

link weight changes occur in G , which turns G ( V , E , L ) into another network G 

′ (
V, E, L 

′ )
. Assume T s is the SPT rooted at 

node s in G , and T 
′ 

s is the SPT in G 

′ 
. Then the SPT in the dynamic graphs is to compute T 

′ 
s from T s . In the past years, 

a large number of papers have focused on this problem. Generally, these approaches can be grouped into two categories: 

static algorithms and dynamic algorithms. Static algorithms, i.e., Dijkstra algorithm [13] , Bellman algorithm [17] , solve this 

problem by reconstructing the SPT whenever there are edge weights changes. However, if only a small portion of the links in 

the network experience weight changes, then these algorithms will lose efficiency. In addition, since static algorithms always 

compute the shortest path from scratch, if there are multiple routes of the same distance from one router to another, these 

algorithms might choose a different routing path, thus resulting in the frequent updates of the routing table, which will 

increase the risk of routing errors and router failures. 

Following the idea of updating SPT by recomputing the shortest paths for the affected vertices [15] , researchers have 

centred on developing dynamic algorithms to reduce the SPT recomputation time. In the past decades, seminal work has 

been done [11,14,33] . For example, the first fully dynamic algorithm was developed by King [22] , which maintained the 

shortest paths of all pairs in digraphs, however, an imposition was that the weight associated with each link must be non- 

negative. To generalize King’s method, Demetrescu and Italiano [12] developed an improved dynamic algorithm in digraphs 

by allowing any arbitrary link weights. By recomputing SPT from the topology of the previously computed SPT, Narvaez 

et al. [32] presented a new dynamic SPT algorithm to handle a single link weight change. However, the above studies only 

emphasize single link weight change. If a set of updates occurs, then these algorithms process them as a sequence of link 

updates. But in many cases, processing a set of updates sequentially is not an efficient solution, particularly when the up- 

dated SPT needs to be computed in a short time. To overcome this deficiency, Narvaez et al. [31] developed a semidynamic 

algorithm using a ball-and-string model, in which the set of link weight updates were processed as a batch. Unfortunately, 

their method for link weight increase is incorrect in certain cases [5] . A fully dynamic algorithm named DynamicSWSF-FP 

was proposed in [37] . However, this method spends too much computational resources on finding the shortest path for the 

influenced nodes. Later, Chan et al. [5] developed a few semidynamic algorithms by optimizing several previously studied 

SPT algorithms, i.e., DynamicSWSF-FP, BallString, DynDijkstra, but their method implemented different programs to handle 

various link weight changes. For instance, DynDijkInc and MBallStringInc were used to find the SPT when the link weight 

increases, while DynDijkDec and MBallStringDec were employed to handle link weight decreases. Qu et al. [36] developed a 

dynamic algorithm based on a modified model of pulse-coupled neural networks (M-PCNNs) to compute SPT for large-scale 

problems. However, when multiple link changes occur, it becomes increasingly complicated to determine the start time of 

the neurons. 

Additionally, there are some drawbacks common to all the algorithms discussed above. First of all, when the network 

size becomes large or a large number of mixed edge changes occur in the network, the process of analysing the affected 

vertices becomes very complicated, and will consume a large amount of CPU time. The rapid development of the Internet 

has witnessed spectacular growth of the network. In this case, the analysing procedure will take much longer time than 

before, which might cause a long latency, thus affecting end-users’ experience. Secondly, the aforementioned algorithms 

implement different programs to handle different link weight updates, i.e., link weight increase, link weight decrease, and 

mixed change of link weights. Suppose additional constraints are required to characterize real-world scenarios, such as, lim- 

iting the maximum time for forwarding the packet, we need to look into three different programs and make corresponding 

changes, which in turn increases the workload. 

Consider the above deficiencies, it is important to investigate alternative approaches to address the SPT problem in dy- 

namic graphs. Computer researchers often look into the behaviour and mechanics of natural-world systems in order to 
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