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a b s t r a c t 

Using the innovation analysis approach, the optimal linear state estimators, including the 

filter, predictor and smoother, in the linear minimum variance (LMV) sense are presented 

for a class of nonlinear discrete-time stochastic uncertain systems with fading measure- 

ments and correlated noises. Stochastic uncertainties of parameter matrices are depicted 

by correlated multiplicative noises. Stochastic nonlinearities are characterized by a known 

conditional mean and covariance. Different sensor channels have different fading mea- 

surement rates. The process and measurement noises are finite-step auto- and/or cross- 

correlated with each other. Two simulation examples verify the effectiveness of the pro- 

posed algorithms. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

In the last decade, research on random parameterized systems has attracted considerable attention due to their wide 

application to target tracking, industrial monitoring, communications, networks, and other areas [7] . In system modeling, 

stochastic uncertainties can be depicted by multiplicative noises in terms of random parameters [11] . In networked control 

systems (NCSs), stochastic phenomena such as transmission time delays and packet dropouts are almost unavoidable due 

to limited communication bandwidth and unreliable channels. These stochastic uncertainties induced by networks can be 

described by stochastic variables, which can be transformed into the system equations with random parameter matrices. 

Many estimation algorithms for such systems have been reported in the recent years; see e.g., [12,16,18,20,22,24,25] and 

references therein. Fading measurements are also frequently occurring phenomena in NCSs. They can reflect the degradation 

of communication channels or aging sensors. Missing measurements are one special case of fading measurements. Such sys- 

tems have undergone considerable research; see e.g., [6,13,17,28] . Additionally, nonlinearities exist in almost all engineering 

systems [10,14,15,27] . To simplify modeling or processing, some minor nonlinear terms which have only a slight influence 

on the performance of systems are ignored. However, nonlinearities can severely degrade the performance of systems if 

they cannot be handled properly. Recently, stochastic nonlinearities have also gained much attention. These include state- 

dependent multiplicative noise as the special case; see e.g., [6,29] . 

In most estimation algorithms of stochastic systems, a general assumption is that process and measurement noises are 

uncorrelated. However, this is not always true in many practical applications such as a discretized continuous-time system 
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[19] , a normal system from the transformation of a singular system [21] , a system measured in a common noisy envi- 

ronment, etc. The process and measurement noises can be finite-step auto- and/or cross-correlated in time. Recently, such 

systems have attracted much attention and many estimation algorithms have been presented [2–6,8,9] . The suboptimal 

Kalman-type recursive filter was designed for systems with correlated noises, random parameter matrices, multiple fad- 

ing measurements and stochastic nonlinearities in [6] . The optimal linear estimators have been presented for systems with 

one-step correlated noises, stochastic nonlinearities, two-step transmission delays and packet dropouts in [29] and with 

finite-step correlated noises and packet dropout compensations in [23] . Similar solutions are also investigated for descriptor 

systems in [4] . However, one-step auto-correlated and/or two-step cross-correlated noises are only involved in [6,29,4] , and 

random parameter matrices, stochastic nonlinearities and fading measurements are not considered in [23] . For systems with 

finite-step correlated noises, recursive Kalman-type filters were designed in [5,19] . However, they are suboptimal because 

their structures are fixed as with the Kalman recursive forms. Recently, an optimal filter in the minimum mean square 

error sense is developed in [8] . However, the fading measurements and stochastic nonlinearities are not considered and 

the multi-step predictors and smoothers are not designed. For multi-sensor systems with random parameter uncertainties 

and/or some random phenomena induced by networks, the centralized and distributed fusion state estimation algorithms 

in the least mean square sense are developed in [2,3,9,26] . However, only one-step auto-correlated and/or two-step cross- 

correlated noises are involved but stochastic nonlinearities are not taken into account. 

Motivated by the above discussion, to the best of the authors’ knowledge, the optimal linear estimation problem has 

not been fully resolved for systems with finite-step auto- and cross-correlated process and measurement noises, random 

parameter matrices, stochastic nonlinearities and fading measurements. Published results are either suboptimal or do not 

comprehensively consider the cases mentioned above. Moreover, most of them focus on the design of filters. In this paper, 

the aforementioned problems are considered fully. For example, random parameter matrices of the systems considered are 

correlated with each other at the same moment. The stochastic nonlinearities are characterized by a known conditional 

mean and covariance. Different sensor channels have different fading measurement rates. And process and measurement 

noises are finite-step correlated. For such a complex system, we present the optimal linear state estimation algorithms in 

the linear minimum variance sense, including filtering, prediction and smoothing, via an innovation analysis approach. 

Notation: Standard notations are used throughout the paper. Superscript T denotes the transpose. E denotes the mathe- 

matical expectation. tr( ◦) denotes the trace of a matrix ◦. δtk is the Kronecker delta function. I n is an n by n identity matrix. 

⊥ denotes orthogonality. � is the Hadamard product. diag (◦) stands for a diagonal matrix whose diagonal elements con- 

sist of ◦. Prob [ •] represents the probability of the occurrence of the event ◦. ˆ x (◦|•) denotes the estimate of the stochastic 

variable x (◦) based on measurements taken before time •, i.e., the projection of x (◦) on the linear space generated by the 

measurements taken before time •. ˜ x (◦|•) = x (◦) − ˆ x (◦|•) denotes the estimation error. P xy (◦, ∗|•) is the covariance matrix 

between estimation errors ˜ x (◦|•) and ˜ y (∗|•) , with P xx (◦, ∗|•) = P x (◦, ∗|•) and P xy (◦, ◦|•) = P xy (◦|•) . In an equation, the term 

{∗} represents the same as a list comprised of the front neighboring term. 

The rest of this paper is organized as follows: In Section 2 , the problem is formulated. In Sections 3 –5 , the optimal linear 

estimators including the filter, predictor and smoother are designed. In Section 6 , two simulation examples are discussed. 

The study’s conclusions are presented in Section 7 . 

2. Problem formulation 

Consider a multi-channel discrete-time stochastic system with random parameter matrices, stochastic nonlinearities, fad- 

ing measurements and correlated noises: 

x (t + 1) = A (t ) x (t ) + f (x (t ) , ξ (t )) + B (t ) w (t ) (1) 

y (t) = γ (t ) C(t ) x (t ) + D (t ) v (t ) (2) 

where x (t) ∈ R n is the state vector to be estimated; y (t) ∈ R m is the measurement vector; w (t) ∈ R r is the process noise; 

v (t) ∈ R p is the measurement noise; A (t) , B (t) , C(t) and D (t) are random parameter matrices with suitable dimen- 

sions; γ (t) = diag ( γ1 (t ) , · · · , γm 

(t )) describes the phenomena of fading measurements of different channels, where the 

scalar stochastic variable γi (t) reflects the fading case of the i th measurement channel with a probability density func- 

tion p 
i 
(t) over the interval [0 , 1] and known statistical properties E { γi (t) } = γ̄i (t) and Cov { γi (t) } = σ 2 

i 
(t) , i = 1 , 2 , ..., m ; 

γi (t) , i = 1 , 2 , ..., m are independent of each other and of other random variables; the function f (x (t) , ξ (t)) represents the 

stochastic nonlinearities of the state, where { ξ (t) , t ≥ 0 } is a zero-mean white noise sequence independent of { A (t) , t ≥ 0 } , 
{ B (t) , t ≥ 0 } , { C(t) , t ≥ 0 } , { D (t) , t ≥ 0 } , { γ (t) , t ≥ 0 } , { w (t) , t ≥ 0 } and { v (t) , t ≥ 0 } . 

The following assumptions will be used throughout the paper. 

Assumption 1. The random parameter matrices { A (t) , t ≥ 0 } , { B (t) , t ≥ 0 } , { C(t) , t ≥ 0 } and { D (t) , t ≥ 0 } are correlated with 

each other at the same moment in time and are independent of { w (t) , t ≥ 0 } and { v (t) , t ≥ 0 } . They have the following 

statistical properties: 

E 

{ M(t) } = M̄ (t) , M = A, B, C, D ;
Cov 

{
M i j (t) , G su (k ) 

}
= T M i j (t) , G su (t) δtk , M, G = A, B, C, D (3) 

where M i j (t) and G su (k ) are the (i, j) th and (s, u ) th entries of matrices M(t) and G (k ) , respectively. 
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