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a b s t r a c t 

The decision plane of support vector machine (SVM) is decided by a few support vectors 

(SVs) in the training set. If there exist overlapping regions among different classes, SVs 

mainly locate in the overlap regions. A number of approaches have been proposed to find 

the samples in overlapping regions to condense the training set. However, the performance 

of these approaches would degrade if there is no overlapping region in the training set. 

In this paper, the extended nearest neighbor chain is proposed to find samples near the 

decision plane to avoid degrading performance in the cases of no overlapping region be- 

tween different classes. Experimental results demonstrate that the proposed method per- 

forms better than the previous ones on artificial synthetic datasets as well as benchmark 

datasets. Additionally, the proposed method can obtain a higher compression ratio than 

previous ones. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

SVM has very good generalization ability [4,28] . It has been used in a wide range of applications, such as object de- 

tection, image denoising, and object tracking etc. [21,31,32] . In SVMs, we need to solve quadratic programming (QP) whose 

time complexity and space complexity are both too high for a large scale dataset. It is imperative to explore strategies to 

speed up SVMs for practical applications. Prior work in speeding up SVMs can be categorized into: algorithmic improve- 

ments [8,11,23,26] , new model establishment [9,10,17,18,27] , and data pre-processing [5,12,13,20,24,25,29,33,34] . The aim of 

algorithmic approach is to make QP solver become faster. The decomposition algorithm [19] and Sequential Minimal Op- 

timization (SMO) algorithm [22] are both classical algorithmic methods. The aim of new model establishment is to avoid 

solving QP, such as core vector machines [9,27] , proximal support vector machine [17,18] , and twin support vector machines 

[10] . The aim of data pre-processing is to identify those samples, which would become SVs, before SVM training. If all non- 

support vectors are removed, the performance would not degrade. After data pre-processing, we only need to train SVM 

on a smaller subset. Thus, the model would become simpler. Additionally, a smaller dataset is also beneficial for tuning 

the parameters, which plays an important role in SVMs. Furthermore, data pre-processing does not conflict with other two 

speedup strategies and can be combined with the two former strategies. 
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Fig. 1. The overlapping region between different classes. 

Generally, SVs locate in the overlapping regions which are between different classes. Shin and Cho [24] proved that 

merely preserving the samples in the overlap regions, the performance of SVM does not degrade. Unfortunately, it is invalid 

for training sets without overlapping regions. In this paper, we find the samples near the decision plane instead of that in 

overlapping regions. The proposed approach can also work well for the training sets without overlapping regions. 

The paper is organized as follows. The related work on condensing training set for SVMs is reviewed in Section 2 . A novel 

method is proposed to find the samples near decision plane in Section 3 . Section 4 provides the validation of the proposed 

method on artificial synthetic datasets as well as benchmark datasets. Discussion and conclusive remarks are provided in 

the last section. 

2. Related work 

Lee and Mangasarian [13] chose a subset by random selection to represent original training set and proposed Reduced 

Support Vector Machine (RSVM). Lin and Lin [16] proved that the performance of RSVM is unstable. De Almeida et al. 

[5] clustered the training set by K-means algorithm and each cluster was represented by its center. Koggalage and Halga- 

muge [12] also utilized cluster algorithm to condense training set, but they reserved boundary samples of each cluster in- 

stead. Zheng and Wang [25,29] utilized cluster algorithm to condense training set too. The performance of those clustering- 

based methods depends on the cluster algorithm. However, the performance of cluster algorithm is usually unstable and the 

number of clusters is difficult to choose. 

For binary-class or multi-class SVMs, support vectors locate in the overlapping regions. In two-class problem, the over- 

lapping region is a hypothetical region where positive samples and negative samples mix together. In Fig. 1 , pluses and stars 

belong to different classes, while circles are the samples locating in the overlapping region. 

According to neighborhood properties, Shin and Cho [24] defined two measures: Neighbors_Entropy and Neigh- 

bors_Match, as follows. 
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where J represents the number of the classes, P j is defined as k j / k ( k is the number of nearest neighbors, and k j is the 

number of the neighbors belonging to class j ). kNN ( x i ) is the k -nearest neighbors list of x i and consists of x 
j 
i 
, j = 1 , . . . , k . 

l abel ( x j 
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) = l abel ( x i ) means that both x i and x 

j 
i 

belong to the same class. He only reserved each sample which satisfies 

Neighbors _ Entropy ( x i , k ) > 0 and Neighbors _ Match ( x i , k ) ≥ 1 /J simultaneously. This method is called neighborhood property–

based pattern selection (NPPS) algorithm in the rest of the paper. 

Panda et al. [20] proposed a scoring function and the corresponding normalized score as follows. 
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