
Local Quantization Code histogram for texture classification

Yang Zhao a,b, Rong-Gang Wang b,n, Wen-Min Wang b, Wen Gao b

a School of Computer and Information, Hefei University of Technology, Hefei 230009, China
b School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China

a r t i c l e i n f o

Article history:
Received 16 September 2014
Received in revised form
6 October 2015
Accepted 4 May 2016
Communicated by Qi Li
Available online 16 May 2016

Keywords:
Local binary pattern
Texture classification
Local quantization

a b s t r a c t

In this paper, an efficient local operator, namely the Local Quantization Code (LQC), is proposed for
texture classification. The conventional local binary pattern can be regarded as a special local quanti-
zation method with two levels, 0 and 1. Some variants of the LBP demonstrate that increasing the local
quantization level can enhance the local discriminative capability. Hence, we present a simple and
unified framework to validate the performance of different local quantization levels. In the proposed LQC,
pixels located in different quantization levels are separately counted and the average local gray value
difference is adopted to set a series of quantization thresholds. Extensive experiments are carried out on
several challenging texture databases. The experimental results demonstrate the LQC with appropriate
local quantization level can effectively characterize the local gray-level distribution.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Texture classification is a basic issue in image processing and
computer vision, and playing a significant role in many applica-
tions, such as remote sensing, biomedical image analysis, image
recognition and retrieval. In these practical applications, it is very
difficult to ensure that captured images have the same viewpoint.
Hence, texture classification methods should be ideally invariant
to translation, rotation and scaling.

More and more attention has been paid on invariant texture
classification. So far, many approaches have been proposed to
achieve rotation invariance for texture classification that can be
broadly divided into two categories, i.e., statistical methods and
model-based methods, respectively. In statistical methods, texture
is generally described by the statistics of selected features, e.g.,
invariant histogram, texture elements, and microstructures. Davis
et al. [1] exploited polarograms and generalized co-occurrence
matrices to obtain rotation invariant statistical features. Duvernoy
et al. [2] introduced Fourier descriptors to extract the rotation
invariant texture feature on the spectrum domain. Goyal et al. [3]
proposed a method by using texel property histogram. Eichmann
et al. [4] presented texture descriptors based on line structures
extracted by Hough transform. In [33], Hanbay et al. presented
four effective rotation invariant features based on histograms of
oriented gradients (HOG) and co-occurrence HOG (CoHOG). In
model-based methods, texture is usually presented as a

probability model or as a linear combination of a set of basis
functions. Kashyap et al. [5] developed a circular simultaneous
autoregressive (CSAR) model for rotation invariant texture classi-
fication. Cohen et al. [6] characterized texture as Gaussian Markov
random fields and used the maximum likelihood to estimate
rotation angles. Chen and Kundu [7] addressed rotation invariant
by using multichannel sub-bands decomposition and hidden
Markov model (HMM). Porter et al. [8] exploited the wavelet
transform for rotation invariant texture classification by means of
the Daubechies four-tap wavelet filter coefficients. Recently, Xu
et al. [30–32] proposed a scale invariant texture feature by means
of the multi-fractal spectrum.

McLean [15] proposed to use vector quantization for texture
classification. But the quantization step is processed on large
image area and thus loses the details of the local neighborhood
grayscale distribution. However, the local distribution has been
proven to be the important discriminative information of texture.
For example, Haralick proposed that central to virtually all aspects
of texture classification is the identification of a “texture cell” that
defines a local region containing the essence of the repeated
structure [16]; Effective texton-based methods [17,27–29] also
proved that texture classification can be tackled effectively by
employing only local neighborhood distributions .

Local texture descriptor is another example to prove the
importance of the local neighborhood distribution. In [9], Ojala
et al. proposed an efficient local operator, namely Local Binary
Pattern (LBP). The LBP extracts the local pattern and it is proven to
be invariant to monotonic grayscale transformation. Nowadays,
the LBP is one of the most popular local texture descriptors, since
it is simple and effective [26]. Many LBP-like local texture
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operators have been proposed after Ojala’s work, e.g., Heikkila
et al. [10] proposed center-symmetric LBP (CS-LBP) by comparing
center-symmetric pairs of pixels instead of comparing neighbors
with central pixels. Liao et al. [11] presented Dominant LBP (DLBP),
in which dominant patterns were experimentally chosen from all
rotation invariant patterns. Tan and Triggs [12] proposed the
method of Local Ternary Pattern (LTP), which extends original LBP
to 3-valued codes. Recently, Guo et al. [13] developed the com-
pleted LBP (CLBP) by combining the conventional LBP with the
measures of local intensity difference and central gray level.
Khellah [14] presented a new method for texture classification,
which combines Dominant Neighborhood Structure (DNS) and
traditional LBP, Zhao et al. [18] proposed to use local binary count
(LBC) to extract the local neighborhood distribution, Zhang et al.
[19] presented a new local energy pattern for texture classification,
Li et al. [20] proposed a scale invariant LBP by means of scale-
adaptive texton. Most Recently, Guo et al. [36] present a scale
selective CLBP. In addition, there is other way to look at LBP, e.g.,
LBP is regarded as a special filter-based method [24,25].

The LBP can be regarded as a special local quantization method
with two quantization levels, 0 and 1. How to select the quanti-
zation level is a basic issue of the traditional quantization meth-
ods. The specified gray value of each individual pixel is sensitive to
noise and illumination, thus lower quantization level is more
robust to the illumination changes. But reducing the quantization
level also loses detailed gray value information of pixel at the same
time. The LBP is insensitive to monotonic illumination changes by
quantizing the local gray level into only two levels. Meanwhile, the
two values (0 and 1) extract scarcely any gray value information of
the pixel. Although the LBP discards almost all the gray value
information of individual pixel, the quantized neighbor pixels are
combined together to describe the local pattern. Therefore, the LBP
can effectively characterize the local distribution. Is the local
quantization level needed to be increased? Does an optimal local
quantization level exist? How to describe the local distribution
when the quantization level is increased? In this paper, we shall
try to address these questions by proposing a new local operator
named Local Quantization Code (LQC). Experimental results illus-
trate that the LQC with appropriate local quantization level can
effectively characterize the local neighborhood distribution.

The rest of this paper is organized as follows: Section 2 briefly
reviews the basic principle of the relative variants of the LBP.
Section 3 presents the LQC in detail. Experimental results are
presented in Section 4, and Section 5 concludes the paper.

2. Related works and analyses

In this section we provided a brief review of the LBP and related
variants of the LBP, i.e., the LTP, the CLBP and the LBC.

As shown in Fig. 1, the algorithm of LBP contains three main
steps. First, the values of neighbor pixels are turned into binary
values (0 or 1) by comparing them with the central pixel. Second,
the binary numbers are encoded to characterize a local structure
pattern, and then the code is transformed into decimal number.
Finally, after the LBP code of each pixel is defined, a histogram will
be built to represent the texture image.

Usually, the LBP encoding strategy can be described as follows:

LBPP;R ¼
XP�1

p ¼ 0

sðgp�gcÞ2p; sðxÞ ¼
1; xZ0
0; xo0

(
ð1Þ

where gc represents the gray value of the center pixel and gp (p¼0,
…,P�1) denotes the gray value of the neighbor pixel on a circle of
radius R, and P is the total number of the neighbors. As afore-
mentioned, although the LBP is robust to monotonous illumination
changes, the binary quantization process also loses the detailed
gray value information of pixels. Hence, it seems that increasing
the local quantization level can enhance the discriminative cap-
ability of the LBP. However, it is very difficult to compute the LBP
codes directly when the local quantization level is increased. It is
easy to be found that the length of LBP feature become Lp if the
quantization level increases to L, e.g., if local quantization level is
4 and 16 neighbors are calculated, the length of LBP-like feature
will be 416.

Although it is hard to increase the local quantization level
directly in the LBP-like way, many works have been proposed to
extract the gray value information that omitted in the binary
quantization step of the LBP.

Tan and Triggs [12] proposed local ternary pattern (LTP) to
quantize the local neighbors into three levels. As illustrated in
Fig. 2, 2-valued (0, 1) LBP code is extended to 3-valued (�1, 0, 1)
ternary code by means of a threshold t. The upper pattern and
lower pattern are then encoded in LBP-like way, respectively. LTP
codes can extract more gray value difference information, but no
longer strictly invariant to monotonic gray scale transformation
since threshold t is specified by user. It also should be noticed that
the threshold t is set as 5 on many texture databases according to
the experimental performance. Since the gray value of the pixels
can be 0–255, the local quantization threshold seems quite small,
and this will also be discussed later in Section 3.2.

Guo et al. [13] proposed a completed framework of LBP (CLBP)
by combining the sign (0 or 1) feature with the magnitude (the
gray value difference) feature. Although the CLBP did not directly
increase the local quantization level, the magnitudes feature pro-
vided complementary gray value difference information that lost
during the binary quantization process. Moreover, Guo et al.
observed that the center pixel also had discriminative information.
The CLBP extended original LBP to a completed framework and
achieved impressive classification results.

These variants of the LBP demonstrate that increasing the local
quantization levels can enhance the discriminative capability.
Then the key question becomes how to increase the local quan-
tization level in an efficient and unified framework.

In [18], Zhao et al. proposed the local binary count (LBC) by
means of a local counting method to encode the rotation invariant
local distribution after local neighbors are quantized into two
levels. In the LBC, the number of value 1’s in the binary neighbor
sets is simply counted. As illustrated in Fig. 3, the number of value
1’s is 4 in the binary neighbor set, thus the LBC code of the central
pixel is 4. The LBC reveals another cursory encoding method to
characterize the local neighborhood distribution, and the LBC-like
encoding is easy to expand.

3. Local Quantization Code histogram method

3.1. Calculation of the Local Quantization Code

In the conventional LBP and its variants, each pixel in the local
neighbor set is turned into binary form by comparing it with the
central pixel. To increase the quantization level, a series of quan-
tization thresholds (σ1, σ2, σ3, σ4 …) need to be used. After theseFig. 1. Illustration of the LBP process. (P¼8, R¼1).
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