
Information Sciences 381 (2017) 229–249 

Contents lists available at ScienceDirect 

Information Sciences 

journal homepage: www.elsevier.com/locate/ins 

Modeling regenerative processes with membrane computing 

Manuel García-Quismondo 

a , ∗, Michael Levin 

b , Daniel Lobo 

c 

a National Zoological Park, Smithsonian Institution, 3001 Connecticut Ave. NW, Washington, DC 20 0 08, USA 
b Department of Biology, Tufts University, 200 Boston Ave, Medford, MA 02155, USA 
c Department of Biological Sciences, University of Maryland, Baltimore County, 10 0 0 Hilltop Circle, Baltimore, MD 21250, USA 

a r t i c l e i n f o 

Article history: 

Received 5 January 2016 

Revised 11 October 2016 

Accepted 25 November 2016 

Available online 27 November 2016 

Keywords: 

Planarian 

Modeling 

Regeneration 

P systems 

Membrane computing 

Bioinformatics 

a b s t r a c t 

Understanding the remarkable ability of some organisms to restore their anatomical shape 

following the amputation of large parts of their bodies is currently a major unsolved ques- 

tion in regenerative biology and biomedicine. Despite rapid advances in the molecular pro- 

cesses required for regeneration, a systems level, algorithmic understanding of this process 

has remained elusive. For this reason, the field needs new computational paradigms to 

help model the flow of information during regeneration. Membrane computing is a branch 

of natural computing that studies the properties and applications of theoretical computing 

devices known as P systems. These systems are an abstraction of the structure and func- 

tioning of a living cell, as well as its organization in tissues. Here, we propose a model of 

regenerative processes in planarian worms based on P systems, which recapitulates sev- 

eral aspects of regenerative pattern regulation. Our results demonstrate that it is possible 

to apply a novel computational framework to help understand pattern regulation in regen- 

erative biology. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Membrane computing is a branch of natural computing introduced by P ̆aun in 1998 [63] . This discipline studies the prop- 

erties and applications of theoretical computing devices known as P systems, which are an abstraction of the structure and 

functioning of a living cell, as well as its organization in tissues and other higher-order structures [27,45,46,55–57,64,79,81–

83] . A P system defines a structure consisting of a graph of interconnected compartments , which are symbolic entities that 

could represent biological cells or group of cells in an organism. Each compartment contains a multiset of objects, which 

may be molecules with potentially different electrical charges. There are rules that dictate how objects are created, re- 

moved, or migrate across compartments and during a computation, objects are processed by means of rewriting rules . P 

system rules are abstractions of the biochemical and electrical reactions that occur inside living cells. Objects can move be- 

tween two compartments if there exists an edge or link that connects the two compartments. This represents the biological 

signaling that occurs between two cellular entities. Spurred by the success of membrane computing as a modeling frame- 

work, we propose herein a new class of P systems called regenerative P systems . This computational framework provides a 

mathematical formalism to model regenerative processes in biological organisms. 

One of the major unsolved questions facing basic biology and biomedicine today is understanding the remarkable abil- 

ity of some organisms to restore their anatomical shape following amputation of large portions of their bodies [1,73] . For 
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example, salamanders can regenerate their limbs, eyes, jaws, hearts, and portions of the brain [7] . Understanding shape 

homeostasis and restoration is critical, not only for advances in regenerative medicine, but also for fundamental issues 

in developmental biology and evolution [26,29,32,62,69] . While much progress has been recently made in identifying the 

molecular signaling required for regeneration [6] , we are still very far from understanding the control of shape. The molec- 

ular details are becoming clearer, but the information flow, computation, and control policies for organizing cell behaviors 

towards large-scale anatomical outcomes are largely unknown [33] . 

Planaria are a powerful model system in this field, because they can regenerate every part of their bodies [34,70] . We 

need to develop computational models that can explain how regeneration creates exactly what is missing, in the right 

location, and stops when the target morphology has been achieved. Several types of models have been proposed [11,49,80] , 

yet constructive models are the important to explore. These models show the sufficient steps to restore pattern, not only 

pathways of events necessary for regeneration [2,35,38] . This is largely an unexplored field, and we are still groping for the 

correct formalism and appropriate data representation for such models and the algorithms they implement [3,5,50,68,74] . 

To enrich the field of possibilities, and introduce biologists to another way to think about the controls of pattern regulation, 

we present here a model of planarian regeneration based on P systems. 

A number of modeling formalisms have been attempted in planaria, including [15,35,72,74] and others described in [14] ; 

however, P systems have not been investigated in this context. We decided to select membrane computing as our mod- 

eling framework for regenerative processes because of its biologically–relevant properties. The explicit spatial structure of 

compartments in P systems facilitates the abstraction of morphological regions in regenerative biological organisms. Further- 

more, the intercellular communication and signaling through proteins, small molecules, or biophysical phenomena essential 

to regeneration can be mathematically modeled with signals and objects between the compartments. 

Our model of regeneration can be easily extended by quantizing these signals in packages. This permits us to model the 

magnitude of these cellular signals as the difference in the number of objects of a given class. In addition, the modular 

property of P systems permits us to bundle any specific aspect of regenerative processes into a subset of rules. These rules 

can then be modified without affecting the overall dynamics of the model [13,66] . For example, the specific signaling mech- 

anisms for regenerating the brain and eyes can be modeled with an isolated set of rules without interferences with other 

aspects of the model. 

In our proposed model, the flatworm morphology is represented as a rectangular compartment grid. Each compartment 

represents a morphological region, and each region belongs to one of the following parts in the morphology: head, trunk 

or tail. Signals can be sent between two compartments as long as there exists a link between them. We use objects to ex- 

press the membership of a compartment to a worm region and to represent organs inside these regions. We also use links 

to denote communication between compartments. Our model aims to reproduce molecular and electrical signals sent be- 

tween cells at a local level, which eventually configure emergent morphologies [33,75] . This modeling approach bears some 

resemblance to peer-to-peer networks. In both frameworks, a consensus system behavior emerges from the pairwise com- 

munication between nodes [16] . In fact, fault diagnosis of electrical and computer networks has been successfully modeled 

using P systems [58] . We have tested our modeling framework with a set of planarian in silico experiments that recapitulate 

the resultant phenotypes observed in vivo . 

Section 2 introduces regenerative P systems as a new class of membrane computing devices. In Section 3 , the model is 

described and its behavior is explained. Section 4 simulates the model for several scenarios, encompassing interesting case 

studies. Section 5 compares the model predictions in these scenarios with experimental results. Finally, our conclusions are 

reported in Section 6 . 

2. Regenerative P systems 

In this section, we propose a novel framework named regenerative P systems to model biological regeneration processes. 

This framework is mainly inspired by kernel P systems, a previous approach in membrane computing [20–22,28] . Prior to 

defining the framework, we describe some preliminary concepts as defined in [18] : 

An alphabet � is a non-empty set whose elements are called symbols . Likewise, a multiset w over an alphabet � is a 

pair w = (�, f ) where f : � → N is a mapping. For each x ∈ � we say that f ( x ) is the multiplicity of the symbol x in w . 

If w = (�, f ) is a multiset, then its support is defined as supp(w ) = { x ∈ � | f (x ) > 0 } . A multiset is finite if its support is a 

finite set. A set is a multiset such that the multiplicity of each element of its support is greater or equal to 1, that is, the 

multiset can contain more than one object of the same class. 

If w = (�, f ) is a finite multiset over �, and supp(w ) = { a 1 , . . . , a k } then it will be denoted as w = a 
f (a 1 ) 
1 

. . . a 
f (a k ) 

k 
(here 

the order is irrelevant), and we say that f (a 1 ) + · · · + f (a k ) is the cardinal of w , denoted by | w |. The empty multiset is 

denoted by ∅ . We also denote by M ( �) the set of all finite multisets over �. 

Consider w 1 = (�, f 1 ) and w 2 = (�, f 2 ) multisets over �. We define the following concepts: 

• The union of w 1 and w 2 , denoted by w 1 + w 2 is the multiset ( �, g ), where g = f 1 + f 2 , that is, g(x ) = f 1 (x ) + f 2 (x ) for 

each x ∈ �. Likewise, when w 1 is updated as w 1 ← w 1 + w 2 , we say that w 2 is generated into w 1 . 
• The relative complement of w 2 in w 1 , denoted by w 1 �w 2 is the multiset ( �, g ), where g(x ) = f 1 (x ) − f 2 (x ) if f 1 ( x ) ≥ f 2 ( x ) 

and g(x ) = 0 otherwise. Likewise, when w 1 is updated as w 1 ← w 1 − w 2 , then we say that w 2 is consumed from w 1 . 

We also say that w 1 is a submultiset of w 2 , denoted by w 1 ⊆w 2 , if f 1 ( x ) ≤ f 2 ( x ) for each x ∈ �. 
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