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a b s t r a c t 

In this paper, a new variant of feedforward neural networks has been proposed for a class 

of nonsmooth optimization problems. The penalty term of the presented neural networks 

stems from the Group Lasso method which selects hidden variables in a grouped manner. 

To deal with the non-differentiability of the original penalty term ( l 1 − l 2 norm) and avoid 

oscillations, smoothing techniques have been used to approximate the objective function. 

It is assumed that the training samples are supplied to the networks in a specific incre- 

mental way during training, that is, in each cycle samples are supplied in a fixed order. 

Then, under suitable assumptions on learning rate, penalization coefficients and smooth- 

ing parameters, the weak and strong convergence of the training process for the smooth- 

ing neural networks have been proved. The convergence analysis shows that the gradient 

of the smoothing error function approaches zero and the weight sequence converges to 

a fixed point, respectively. We demonstrate how the smoothing approximation parameter 

can be updated in the training procedure so as to guarantee the convergence of the proce- 

dure to a Clarke stationary point of the original optimization problem. In addition, we have 

proved that the original nonsmoothing algorithm with l 1 − l 2 norm penalty converges con- 

sistently to the same optimum solution with the corresponding smoothed algorithm. Nu- 

merical simulations demonstrate the convergence and effectiveness of the proposed train- 

ing algorithm. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Artificial neural networks have been widely used in various applications, such as pattern recognition, machine learning, 

data mining and signal processing [22,25,35] . The feedforward networks are one of the most popular architectures for their 

strong structural flexibility, good representation ability and compatibility with different training algorithms. 
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A reasonable architecture is one of the key aspects to guarantee better generalization of the trained neural networks [2] . 

Generally, the number of neurons in the input and output layers is fixed and represents the attributes and the target values 

of the dataset, respectively. Whereas the number of neurons in the hidden layer (or layers) depends on the complexity of 

the problem to be modeled, it is essential how to optimize the number of hidden neurons. 

Typically, there are two approaches to determine the number of hidden neurons. One is the growing method, which 

starts with a small initial network and then adds hidden neurons stepwise during training [33,37,55] . 

The other is a pruning way, which starts with a large initial network and then removes the unnecessary neurons or 

weights [1,27,36,38,43,53] . Researchers have developed a number of pruning algorithms to optimize network architectures. 

An interesting comparative study for pruning algorithms of neural networks has been presented in [2] . Based on the elimina- 

tion techniques, pruning methods could be categorized as penalty term methods, cross validation methods [28] , magnitude 

base methods [19] , evolutionary pruning methods [45] , mutual information (MI) [16] , significance based pruning methods 

and sensitivity analysis (SA) method [1,3] . This paper focuses on pruning technique by using a novel penalty term for back- 

propagation (BP) neural networks. 

For standard networks, the error function is defined as the sum of the squared errors 

E = 

1 

2 

∑ 

j 

‖ Out put j − T arget j ‖ 

2 , (1) 

where j represents the j th sample of the dataset. When a network is to be pruned, it is common to add a penalty term to 

the error function during training 

E = 

1 

2 

∑ 

j 

‖ Out put j − T arget j ‖ 

2 + λφ(w ) . (2) 

The penalty term is to suppress the unnecessary connections between neurons. The parameter λ > 0 is the regularization 

coefficient, which balances the relative importance of the penalty term and the pure error expression. 

There are three typical regularization forms for feedforward networks: weight decay [9,24,39,43] , weight elimination 

[29,32,38,44] and approximate smoother [15,34] . 

When the backpropagation method is employed to train the network, uniform weight decay in [24] has a disadvantage 

that large weights are decaying at the same rate as small weights [20] . To remedy this problem, the weight elimination 

method has been suggested in [44] . Unfortunately, it does not distinguish between the large and very large weights [38] . 

The approximate smoother [48] appears to be more accurate than weight decay or weight elimination from the complexity 

point of view. It is designed for a multilayer perceptron with a single hidden layer and a single output neuron. However, it 

is more complicated than weight decay or weight elimination and has additional computational cost [21] . 

We notice that the above penalty methods discourage specific connections among neurons. To improve the interpretabil- 

ity and sparsity of neural networks, we will borrow the idea of Group Lasso to optimize the network architecture in this 

paper. 

Lasso, the “least absolute shrinkage and selection operator” was first proposed for linear regression problem as a new 

technique that reduces some coefficients and sets others to zero [42] . It has been popular for simultaneous estimation and 

variable selection. However, lasso often results in selecting more factors than necessary and the solution depends on how 

the factors are represented. Then, a new version of the lasso, the adaptive lasso, was proposed in [56] by employing adaptive 

weights with l 1 penalty term. In addition, it enjoys the oracle properties. 

An extension of lasso known as Group Lasso has been developed in [54] which selects the final models on the solution 

paths and encourages sparsity at group level. The penalty function ( l 1 − l 2 norm) is intermediate between the l 1 penalty in 

lasso and the l 2 penalty in ridge regression (weight decay). In addition, a more general form, sparse Group Lasso, has been 

investigated in [17] which blends the lasso with the Group Lasso. Its main advantage is that it yields the sparse solutions at 

both the group and individual feature levels. 

A novel idea of this paper is to replace the common penalty terms in [24] with a Group Lasso counterpart for BP net- 

works. We expect that this can enhance some of the desirable properties of Group Lasso and improve the pruning perfor- 

mance with better generalization. 

For a multi-layer network, we denote by W i the weight matrix connecting the i th and (i + 1) th layers. We suggest using 

the following expression 

φ(w ) = 

n l −1 ∑ 

i =1 

cl i ∑ 

l=1 

∥∥w 

(i ) 
l 

∥∥, (3) 

where n l is the number of layers, w 

(i ) 
l 

is the l th column vector of matrix W i , cl i is the number of column vectors in matrix 

W i . Thus the function of the optimization problem for pruning the hidden layer can be formulated as follows 

E = 
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