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a b s t r a c t

In this paper, function perturbation of mix-valued logical networks is first proposed and investigated via
semi-tensor product (STP) of matrices. Motivated by the concept of one-bit perturbation in Boolean
networks, the definition of general perturbation in mix-valued logical networks is presented and the
algebraic expression of the perturbed networks is given by STP. The impacts of function perturbation on
fixed points and limit cycles are discussed by analyzing the changes of transition matrix in algebraic
form. In addition to identifying one perturbation in mix-valued logical networks, a new way to identify
multi-perturbation is given. This new method can be used in producing or removing fixed points and
thus exerting effects on limit cycles. All of the theoretical results also hold for Boolean and k-valued
logical networks. Finally, the results of perturbation identification are applied to the WNT5A gene net-
work, which shows broad prospects of application.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In 1969, Kauffman presented “the behavior of large nets of ran-
domly interconnected binary (on-off) ‘genes’” by utilizing Boolean
networks for the first time [1]. Since then, Boolean networks came
into widespread use in plenty of areas. A Boolean network is a set of
interacting nodes where each node takes value from {0,1}. Gene states
can be quantized to two levels: True or False [2]. And the states of
genes affect one another by the following logical rules. Thus, Boolean
networks became a powerful tool in describing and analyzing gene
networks as they can describe important characteristics of genes and
their interactions. In the meantime, Boolean networks have been
widely applied in neural networks, economic networks and many
other fields. For instance, their potential as learning systems was
investigated and exploited by employing metaheuristic methods [3].
The authors in [4] studied the stabilization and controllability issues of
the hybrid switching and impulsive higher order Boolean networks.
Their properties have also been studied sufficiently, such as topolo-
gical structure and dynamic characteristics [5,6]. The attractors (fixed
points and cycles) of a Boolean network play an important role in
representing features of living organisms. For example, in cells'
interactions, attractors of Boolean networks indicate the cell types [7]
and some attractors can form a limit cycle. Hence, finding attractors is

of significance and has been well studied [8–10]. However, the lack of
useful tool for logical process leads to the difficulty in analyzing
Boolean networks.

In recent years, with the emergence of a new matrix product,
called semi-tensor product (STP) proposed in [11], many complex
problems which hindered the theoretical and practical development
of Boolean networks have been solved. STP is a generalization of the
conventional matrix product, which can compute the product of
arbitrary matrices without considering whether the dimensions of
two multiplied matrices match with each other. Moreover, STP has
advantages over conventional matrix product since it remains all the
major properties of conventional matrix product and satisfies certain
pseudo-commutative properties [2].

STP approach has been successfully applied to Boolean networks.
Cheng et al. [12] defined Boolean control networks and investigated
their structures and realization problems. In [13], the controllability
and observability of Boolean control networks were studied and the
identification problem was solved. Besides, partial stability of Boolean
networks and stabilization of Boolean control networks were inves-
tigated in [14]. Recently, the authors in [15] presented and discussed
l1-gain and model reduction problems of Boolean control networks,
which is also based on STP. Furthermore, the general singular Boolean
networks were proposed and discussed in [16].

As we mentioned above, Boolean network is significant and
becomes a hot and fruitful topic in biology networks. But it has lim-
itations in describing more precise systems such as neural networks.
Therefore, k-valued networks [17,18] and mix-valued networks [19]
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come forth, which are natural generalizations of Boolean networks.
For example, in [19], the definition, calculation as well as the main
properties of mix-valued logic are systematically proposed.

Robustness is an important property in Boolean networks, k-
valued networks and mix-valued networks. Perturbation of the
states in biology networks is a crucial aspect of robustness. Fixed
points and limit cycles are the main characteristics of steady-state
properties so it is necessary to analyze the effects on fixed points
and limit cycles when discussing perturbations. In Boolean net-
works, perturbation of the states has been well studied by plenty
of methods, such as statistical method [20] and analytical method
[21]. However, these methods did not give a certain algebraic
formulation to solve perturbation problems. Recently, Meng and
Feng [22] have applied STP to investigate the changes of fixed
points and limit cycles under perturbations of Boolean networks,
which is the first to give a clear algebraic formulation of pertur-
bations of the states. Also, in [22], a method of identifying one-bit
perturbation was presented and applied to a D. melanogaster
segmentation polarity gene network.

To the best of our knowledge, there are few literatures about
the perturbations in mix-valued logical networks. Motivated by
[22], in this paper, we use the powerful tool STP to study function
perturbation problems in mix-valued logical networks. The
advantage of using semi-tensor product is that it gives us algebraic
formulations to depict the changes of fixed points and cycles. So
the robustness can be easily solved by just calculating the transi-
tion matrix of the mix-valued logical networks. Besides, mix-
valued logical networks render us more precise descriptions on
diverse systems than Boolean networks since in mix-valued logical
networks, each node can be perturbed to several possible values,
not only 0 and 1.

In our paper, the definition and the algebraic form of general
perturbation in mix-valued logical networks are first presented.
We have obtained results about the changes of fixed points and
cycles under perturbations in mix-valued logical networks and
given equivalent conditions in the form of algebraic equalities.
Through those results, we can see how fixed points and cycles
changed with the influence of perturbation. Compared to the
existing literatures [20,21], the results in our paper are easy to
understand and much simpler to be used in addressing pertur-
bation problems due to clear algebraic formulations. Moreover, all
the results in this paper have a wide range of applications since
they also hold for Boolean networks and k-valued logical net-
works. Identification problem is considered in this paper as two
aspects: identifying single general perturbation and identifying
multi-perturbation in mix-valued logical networks, which can be
used to change limit set of a network, such as producing new
attractors or removing existing attractors. Finally, the methods of
identifying perturbations are applied in a WNT5A gene network.
The results obtained in this paper can be degenerated to Boolean
networks case, which are coincident with results in [22].

The rest of this paper is organized as follows. Section 2 presents
some notations and fundamental theories of STP which will be
used later in this paper. In Section 3, we propose a new sort of
perturbation of mix-valued logical networks and derive the main
results of perturbation's effects on topological structure of net-
works. Section 4 establishes new methods of identifying one
perturbation and multi-perturbation in mix-valued logical net-
works. Besides, we use the methods of perturbation identification
to identify and alter attractors in a WNT5A gene network.
Section 5 concludes the paper.

2. Notations and preliminaries

2.1. Notations

At first, we introduce some notations which will be used later
in this paper.

� Rm�n: the set of m� n real matrices.
� δin: the i-th column of the identity matrix In.
� Dk≔ k� i

k�1j i¼ 1;2;…; k
� �

. If k¼2, D2≔f0;1g.
� Δn≔fδin j i¼ 1;…;ng: Denote δin � n� i

n�1 and we have Δn �Dn.
� xAΔn means the logical variable x takes the value from Δn.
� A matrix LARn�m is called a logical matrix if the columns of L,

denoted by ColðLÞ, are of the form of δin: That is, ColðLÞDΔn: And
ColiðLÞ represents the i-th column of L: Denote by Ln�m the set of
n�m logical matrices.

� If LALn�m, then it has the form L¼ ½δi1n ; δi2n ;…; δimn �. For nota-
tional compactness we write this as L¼ δn½i1; i2;…; im�.

� Let A¼ ðaijÞARm�n;BARp�q. The Kronecker product of matrices
A and B is defined as

A � B : ¼

a11B a12B ⋯ a1nB

a21B a22B ⋯ a2nB

⋮ ⋮ ⋱ ⋮
am1B am2B ⋯ amnB

26664
37775:

2.2. Preliminaries

In this subsection, necessary preliminaries on STP which play
an important role in this paper are introduced.

Definition 1. [23] Let AARm�n and BARp�q: The STP of matrices A
and B, denoted by A⋉B, is defined as

A⋉B¼ ðA � Il=nÞðB � Il=pÞ; ð1Þ

where l¼ lcmfn; pg is the least common multiple of n and p:

Remark 1. We can see that STP of matrices is a generalization of
the conventional matrix product. If n¼ p, STP of matrices becomes
the conventional product. We omit the symbol ⋉ later in this
paper if it dose not lead to confusion.

Definition 2. [2] A swap matrix W ½m;n� is an mn�mn matrix,
defined as follows: label its columns by ð11;12;…;1n;…;

m1;m2;…;mnÞ, label its rows by ð11;21;…;m1;…;1n;2n;…;mnÞ,
and then the element at the position ½ðI; JÞ; ði; jÞ� is

wðI;JÞ;ði;jÞ ¼ δI;Ji;j ¼
1; I¼ i; J ¼ j;

0; otherwise:

(
ð2Þ

Lemma 2.1. [2,17]

1. Let XARm and YARn be two column vectors. Then

W ½m;n�XY ¼ YX: ð3Þ

2. Given AARm�n, let ZARt be a column vector. Then

ZA¼ ðIt � AÞZ: ð4Þ
3. Let XARn, YARq be two column vectors and AARm�n;BARp�q

be two given matrices. Then

ðAXÞ⋉ðBYÞ ¼ ðA � BÞðX⋉YÞ: ð5Þ
Furthermore, if X ¼ YARn;n¼ q, then (5) becomes

ðAXÞ⋉ðBXÞ ¼ ðA n BÞX; ð6Þ
where A n B¼ ½Col1ðAÞ � Col1ðBÞ;…;ColnðAÞ � ColnðBÞ� is the
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