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a b s t r a c t

This paper investigates the problem of stability analysis for uncertain neutral-type neural networks with
Markovian jumping parameters and interval time-varying delays. By separating the delay interval into
multiple subintervals, a Lyapunov–Krasovskii methodology is established, which contains triple and
quadruple integrals. The time-varying delay is considered to locate into any subintervals, which is dif-
ferent from existing delay-partitioning methods. Based on the proposed delay-partitioning approach, a
stability criterion is derived to reduce the conservatism. Numerical examples show the effectiveness of
the proposed methods.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, delayed neural networks have obtained much
more considerable attention because they often exist in a lot of areas,
such as signal processing, model identification and optimization pro-
blem [1–5]. Since that time delays is frequently encountered, the
problem of stability analysis of time delayed neural networks is an
important point in the field of neural networks recently. Besides, many
important results have been proposed in [6–11]. Furthermore, the
neutral-type systems have been always investigated, because that the
past state of the network affects on the current state. Due to the
existence of parameter variations, modeling errors and process
uncertainties, stability analysis of neutral uncertainties systems has
gained a lot of attention [12–14].

In addition, Markovian jump systems can be described by a set of
linear systems with the transitions during models determined by a
Markovian chain in a finite mode set. This system has been applied in
economic systems, modeling production systems and other practical
systems. Markovian jump systems may encounter random abrupt

variations in their structures when the time goes by. For this kind of
systems, we refer readers to [15,16].

Delay-partitioning, which divides delay interval into subintervals,
could obtain less conservative stability conditions [17]. After that the
delay-partition idea was firstly proposed in [17], many researchers
have focused on designing delay-partition technologies [18–23]. For
example, the reference [23] considered a delay partitioning approach
to delay-dependent stability analysis for neutral type neural networks.
Moreover, some researchers in [20,21] have improved the idea to
analyze the stability of time-varying delays.

This paper investigates the problem of stochastic stability analysis
for neutral-type uncertain neural networks with Markovian jumping
parameters and time-varying delays. A novel Lyapunov–Krasovskii
function that involves triple and quadruple integrals terms is con-
structed to obtain less conservative stability conditions. The proposed
delay-partitioning method divide the time-delay interval ½τ�

2 ; τþ
2 �

finely by introducing the time variable ρðtÞ. According to ½ðk�1Þ
h2; kh2� ¼ ½ðk�1Þh2; ðk�1Þh2þρðtÞ�þ½ðk�1Þh2þρðtÞ; kh2�, the time-
delay τ2ðtÞ will determine on the certain subintervals any further.
Moreover, the distributed delay is considered as time-varying delayR t
t� τ3ðtÞ f ðxðsÞÞds. The time variable ρ1ðtÞðρ1ðtÞ ¼ τ3ðtÞ

q Þ is introduced to
cope with the delay-partitioning problem. A new integral inequality is
applied in terms of reciprocally convex inequality, in order to ens-
ure conservatism reduction. Less conservative stability criteria are
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evaluated by using linear matrix inequalities. Numerical examples are
given to demonstrate the effectiveness of the proposed methods.

Notations: Rn denotes n-dimensional Euclidean space and Rn�n

is the set of all n� n real matrices. For symmetric matrices X, X
40 ðXZ0Þ represents that it is a real symmetric positive definite
matrix (positive semi-definite). For symmetric matrices X and Y,
X4YðXZYÞ means that the matrix X�Y is positive definite
(nonnegative). AT stands for the transpose of matrix A. sym(A)
denotes AþAT . n denotes the elements below the main diagonal of
a symmetric block matrix. I means the identity matrix with
appropriate dimensions. Om�n represents zero matrix with m� n
dimensions. J � J denotes the Euclidean norm of vector and its
induced norm of matrix. ðΩ; F; PÞ is a complete probability space
with a filtration fFtgtZ0, in which Ω; F and P separately denote a
sample space, the σ-algebra of sunset of sample space and the
probability measure on F. LPF0 ð½�τ;0�;RnÞ is the family of all F0-
measurable Cð½�τ;0�;RnÞ-valued-random variables ξ¼ ξðθÞ : �τr
θr0 such that sup�τrθr0EfJξðθÞJ22go1, where Ef�g stands for
the mathematical expectation operator with respect to the given
probability measure P. col½x1; x2;…; xn� means ½xT1 ; xT2 ;…; xTn�T .

2. Preliminaries

Let frt ; tZ0g be right-continuous Markov process on the prob-
ability space which takes values in the finite space S¼ f1;2;…;Ng
with generator π ¼ ðπijÞði; jASÞ also called jumping transfer matrix
given by

PfrtþΔ ¼ jj rt ¼ ig ¼
πijΔþoðΔÞ if ja i;

1þπiiΔþoðΔÞ if j¼ i;

(
ð1Þ

where Δ40 and limΔ-0
oðΔÞ
Δ ¼ 0. πijZ0 is the transition rate from i

to j if ia j and πii ¼ �Pja iπij. Consider a class of neutral-type
uncertain neural networks with Markovian jumping parameters
and mixed delays

_yðtÞ ¼ Eðrt ; tÞ _yðt�τ1ðtÞÞþAðrt ; tÞyðtÞþBðrt ; tÞgðyðtÞÞ

þCðrt ; tÞgðyðt�τ2ðtÞÞÞþDðrt ; tÞ
Z t

t� τ3ðtÞ
gðyðsÞÞdsþ I; ð2Þ

where yðtÞ ¼ ½y1ðtÞ;…; ynðtÞ�T ARn is the neuron state vector; gðyð�ÞÞ
¼ ½g1ðy1ð�ÞÞ;…; gnðynð�ÞÞ�T ARn is the neuron activation function
vectors; I ¼ ½I1;…; In�; we shall use the following assumption.

Assumption 2.1. For the uncertain matrices of the system ð2Þ,
Eðrt ; tÞ, Aðrt ; tÞ, Bðrt ; tÞ, Cðrt ; tÞ, Dðrt ; tÞ denote interconnection weight
matrices and can be described by

Eðrt ; tÞ Aðrt ; tÞ Bðrt ; tÞ Cðrt ; tÞ Dðrt ; tÞ
� �

¼ EðrtÞ AðrtÞ BðrtÞ CðrtÞ D rtð Þ� �
þYðrtÞI rt ; tð Þ MeðrtÞ MaðrtÞ MbðrtÞ McðrtÞ MdðrtÞ

� �
; ð3Þ

where AðrtÞ ¼ �diagða1ðrtÞ;…; anðrtÞÞo0, BðrtÞ, CðrtÞ, DðrtÞ, EðrtÞ,
YðrtÞ, MaðrtÞ MbðrtÞ, McðrtÞ, MdðrtÞ, MeðrtÞ represent the constant
matrices. In order to simplify the notation, let rt ¼ i. Then, one has
AðrtÞ ¼ Ai, BðrtÞ ¼ Bi, and so on. Iðrt ; tÞ is an unknown time-var-
ying matrix with Lebesgue measurable elements bounded by
IT ðrt ; tÞIðrt ; tÞr I, which is the identity matrix of appropriate
dimensions.

Assumption 2.2. The time delays τ1ðtÞ, τ2ðtÞ, τ3ðtÞ are con-
tinuously time-varying functions in ð2Þ that satisfy

0rτ�
1 rτ1 tð Þrτþ

1 ; _τ1 tð Þrμ1;

0rτ�
2 rτ2 tð Þrτþ

2 ; _τ2 tð Þrμ2;

0rτ3 tð Þrτþ
3 :

8><
>: ð4Þ

For any integers mZ1, lZ1, qZ1, let h1 ¼ τ �
2
m , h2 ¼ τ þ

2 � τ �
2

l , h3 ¼ τ þ
3
q ,

ρ1ðtÞ ¼ τ3ðtÞ
q , ρðtÞ ¼ τ2ðtÞ�τ �

2
l , then ½0; τ�

2 � can be divided into m seg-
ments, ½τ�

2 ; τþ
2 � can be divided into l segments, ½0; τ3ðtÞ� can be

divided into q segments. ½0; τ�
2 � ¼⋃m

i ¼ 1½ði�1Þh1; ih1�, ½τ�
2 ; τþ

2 � ¼
⋃l

i ¼ 1½τ�
2 þði�1Þh2; τ�

2 þ ih2�, ½0; τþ
3 � ¼⋃q

i ¼ 1½ði�1Þh3; ih3�, ½0; τ3
ðtÞ� ¼⋃q

i ¼ 1½ i�1ð Þρ1ðtÞ; iρ1ðtÞ�. For each subinterval ½ðk�1Þh2;
kh2�; k¼ 1;2;…; l, it easy to obtain ½ðk�1Þh2; kh2� ¼ ðk�1Þ�
h2; ðk�1Þh2þρðtÞ� [ ½ðk�1Þh2þρðtÞ; kh2�. On the other hand, for
any tZ0, there exists an integer kAf1;2;…; lg such that
τ2 tð ÞA ½ðk�1Þh2; kh2�.

Assumption 2.3. Each activation function f ið�Þ in the system ð2Þ is
continuous and bounded, which satisfies the following inequalities

σ�
i rgiðaÞ�giðbÞ

a�b
rσþ

i ; k¼ 1;2;…;n; and gið0Þ ¼ 0; ð5Þ

where a, bAR, aab, σ�
i , σþ

i are known constants.

Remark 2.1. σ�
i , σþ

i ði¼ 1;2;…;nÞ are some constants, and they
can be positive, negative, and zero in Assumption 2.3. Conse-
quently, this type of activation function is clearly more general
than both the usual sigmoid activation function and the piecewise
linear function giðuÞ ¼ 1

2ðjuiþ1 j � jui j Þ, which is useful to get less
conservative result.

Let the equilibrium point yn in (2) be the origin, by setting
xðtÞ ¼ yðtÞ�yn. The system (2) can be rewritten in the following
form

_xðtÞ ¼ E rt ; tð Þ _xðt�τ1ðtÞÞþAðrt ; tÞxðtÞþBðrt ; tÞf ðxðtÞÞ

þCðrt ; tÞf ðxðt�τ2ðtÞÞÞþD rt ; tð Þ
Z t

t� τ3ðtÞ
f ðxðsÞÞds; ð6Þ

where xðtÞ ¼ x1ðtÞ;…; xnðtÞ½ �T ARn is the neuron state vector, f iðxð�ÞÞ
¼ giðxið�Þþyn

i Þ�giðyn

i Þ i¼ 1;2;…;n. From Assumption 2.3, the
transformed neuron activation function satisfies

σ�
i r f iðaÞ� f iðbÞ

a�b
rσþ

i ; k¼ 1;2;…;n; and f ið0Þ ¼ 0: ð7Þ

The purpose of this paper is to obtain the stability theorem for the
system (6). The following robustly stochastically stable definition
is introduced.

Definition 2.1 ([20]). The trivial solution (equilibrium point) of
the neutral-type neural networks with Markovian jumping para-
meters (2) is said to be robustly stochastically stable in the mean
square, if limt-1EfJxðtÞJ2g¼0, for all admissible uncertainties
satisfying (3).

Before deriving the main results, the following lemmas which
will be used are given.

Lemma 2.1 ([24]). For any constant matrices V, WARn�n with
M40, scalars b4a, vector function V:½a; b�-Rm such that integra-
tions in the following are well-defined, then

ðb�aÞ
Z b

a
VT ðsÞMVðsÞdsZ

Z b

a
VðsÞds

 !T

M
Z b

a
VðsÞds; ð8Þ

τ2

2

Z 0

� τ

Z t

tþθ
WT ðsÞMWðsÞdsdθZ

Z 0

� τ

Z t

tþθ
WðsÞdsdθ

 !T

M
Z 0

� τ

Z t

tþθ
WðsÞdsdθ: ð9Þ

Lemma 2.2 ([25]). For the given matrices Q ¼QT , D, E with
appropriate dimensions, one can conclude that

QþDFðtÞEþETFT ðtÞDT o0; ð10Þ
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