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a b s t r a c t

This paper investigates the exponential stabilization of neural networks with time-varying delay by
periodically intermittent control. By employing the free-matrix-based integral inequality and using some
new analysis techniques, some novel exponential stabilization criteria are derived based on the Lyapu-
nov–Krasovskii (L–K) functional method. The obtained criteria are in terms of linear matrix inequalities
without transcendental equation, instead of nonlinear matrix inequalities, which reduces the compu-
tational burden. Compared to existing results in corresponding literatures, our results have a wider range
of applications, and overcome no feasible solution if the information on the sizes of delays is ignored for
the design of the intermittent controller. A numerical simulation is provided to show the effectiveness
and the benefits of the theoretical results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In past decades, neural networks have been extensively inves-
tigated and rapidly developed since they have wide applications in
a variety of fields, such as secure communication, quantum devi-
ces, pattern classification, associative memory, etc. Due to the
inherent characteristics of neural networks, they may have
undesirable dynamical behaviors such as chaos, oscillators and
instability. However, it is essential that the designed neural net-
works are stable in their applications. Thus, the stability analysis
and control of neural networks have attracted significant atten-
tions, see, e.g., [1–16] and references therein. Up until now, many
control strategies have been put forward to realize stabilization
and synchronization for the considered systems, including
sampled-data control [17], L2 control [18], H1 control [19,20],
quantized control [21], adaptive control [22], impulsive control
[23], intermittent control [24–27] and so on.

The type of control concerned in this paper is intermittent
control, which was proposed in the seminal paper of Craik (see
[28]) and has aroused a great deal of interest due to its broad
potential applications [29–33]. Compared with continuous control,
intermittent control is a more economical and effective approach
when the system output is measured intermittently rather than

continuously. On the other hand, an extreme case of intermittent
control can be taken as impulsive control, in comparison with
impulsive control, which is easier to implement in practical
applications and process control since it has a nonzero control
width, but impulsive control is activated only at some isolated
instants. Owing to those merits, intermittent control has become a
hot control method in the fields of chaotic systems and networks,
and achieved many results, see, e.g., [34–52] and references
therein.

So far, the Lyapunov function is the most common method to
obtain stabilization criteria and synchronization criteria of chaotic
systems and neural networks under intermittent control, but this
method is somewhat conservative due to the construction of
Lyapunov function, Sanchez and Perez matrix inequality, and
techniques of differential inequality used. In [45–49], the authors
analyzed the exponential stabilization problem of chaotic system
and chaotic neural networks without delay and with constant
delay. Unfortunately, some strong assumptions were made in
these papers. For example, the control width is assumed to be half
of control period [47], the control width has to be larger than the
time delay [48], the relationship between non-control width and
time delay is imposed [49]. In [50], the authors considered expo-
nential stabilization and synchronization of neural networks with
time-varying delays based on p-norm and 1-norm, but the deri-
vative of the time-varying delay has to be smaller than 1. These
assumptions restrict the application scope for their results to some
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extent. Moreover, transcendental equations have to be solved
which are computationally difficult in their results.

Time delays, especially time-varying delays, are unavoidably
encountered in the signal transmission among the neurons, which
will affect the stability of neural networks and may lead to some
complex dynamic behaviors. Choosing an appropriate Lyapunov–
Krasovskii functional that includes more useful state information
and delay information is a more effective method to deal with this
question than using Lyapunov function. However, based on the
Lyapunov–Krasovskii functional method, for exponential stabili-
zation of systems with time-varying delays via periodically inter-
mittent control, few results are found in the literature. In [51,52],
based on Lyapunov–Krasovskii functional and Jensen integral
inequality, the authors discussed the exponential stabilization of
neutral-type neural networks and chaotic systems with mixed
time-varying via intermittent control respectively, but the
obtained criteria are somewhat conservative. In [51], the criterion
proposed is only applied to stabilize slow time-varying neural
networks, and it is not be available to the unstable system, espe-
cially the chaotic system. Moreover, the criterion is expressed in
the form of nonlinear matrix inequalities, which will increase
computational complexity. In [52], the criteria proposed under
periodically intermittent control cannot deal with the differenti-
able time-varying delays systems, and would not be feasible if the
sizes of delays are ignored in the intermittent controller.

Motivated by the above analysis, in this paper, the problem of
exponential stabilization for neural networks with time-varying
delay is studied via periodically intermittent control. By employing
the free-matrix-based integral inequality and some new analysis
techniques, new delay-dependent sufficient conditions for expo-
nential stabilization of neural networks are obtained in terms of
linear matrix inequalities. A numerical simulation is provided to
show the effectiveness and the benefits of the theoretical results.

This paper is organized as follows. In Section 2, model
description and preliminaries are given. Some new criteria are
obtained in Section 3 to ensure the exponential stabilization of
neural networks. In Section 4, the effectiveness of the theoretical
results is shown by a numerical example.

Throughout this paper, the superscripts ‘�1’ and ‘T ’ stand for
the inverse and transpose of a matrix, respectively; Rn denotes the
n-dimensional Euclidean space; J � J is the Euclidean norm of a
vector; Rn�m is the set of all n�m real matrices; P40ðo0; r0;
Z0Þ means that the matrix is symmetric positive (negative, semi-
negative, semi-positive) definite matrix; ‘I’ is an appropriately
dimensioned identity matrix; λminðPÞ stands for the minimum
eigenvalue of the matrix P; SymfXg ¼ XþXT ; supxA ½a;b�f ðxÞ denotes
the minimum value of upper bounds of the function f(x) on the
interval ½a; b�; n represents the symmetric block of a symmetric
matrix.

2. Preliminaries

In this section, a class of neural networks with a time-varying
delay is considered, and its model is represented as follows

_xðtÞ ¼ �CxðtÞþAf 1ðxðtÞÞþBf 2ðxðt�τðtÞÞÞþuðtÞ; tZ0;
xðtÞ ¼φðtÞ; 8 tA ½�τ;0�;

(
ð1Þ

where xðtÞ ¼ ½x1ð�Þ x2ð�Þ ⋯ xnð�Þ�T ARn is the neural state vector at
time t, f ið�Þ ¼ ½f i1ð�Þ f i2ð�Þ ⋯ f inð�Þ�T ARn ði¼ 1;2Þ is the neural acti-
vation function which presents the nonlinear parameter pertur-
bations, u(t) is the control input vector; C ¼ diagfc1; c2;…; cng is a
diagonal matrix with ci40, A, BARn�n are the connection weight
matrices between neurons. The initial condition φðtÞ denotes a
continuous vector-valued initial function on the interval ½�τ;0�.

Assumption ðH1Þ. The time delay, τðtÞ, is a time-varying differ-
entiable function that satisfies

0rτðtÞrτ; _τðtÞrμ: ð2Þ
where τ and μ are real constants.

Assumption ðH2Þ. The nonlinear activation function f ið�Þ ði¼ 1;2Þ
with f ið0Þ ¼ 0 satisfies the following condition, namely, there exist
two positive diagonal matrices Li such that

J f iðxÞ� f iðyÞJ2rðx�yÞTLiðx�yÞ: ð3Þ
for any x; yARn.

Remark 1. In fact, the above assumption implies activation that
function f ið�Þ satisfies the Lipschitz condition. For all x; yARn, the
following inequalities hold

j f ijðxÞ� f ijðyÞjr
ffiffiffiffiffiffi
λLi

q
j x�yj ; ði¼ 1;2; j¼ 1;2;…;nÞ:

where λLi denotes the largest eigenvalue of Li.

For system (1) with initial value, we consider an intermittent
state feedback controller expressed as follows

uðtÞ ¼
KxðtÞ; tA ½lT ; lTþδÞ;
0; tA ½lTþδ; ðlþ1ÞTÞ:

(
ð4Þ

for any nonnegative integer l, where K is a constant control gain, T
is the control period, 0oδrT , and δ is the so-called
control width.

When the intermittent state-feedback control (4) is applied to
(1), system (1) can be rewritten as follows

_xðtÞ ¼ �ðC�KÞxðtÞþAf 1ðxðtÞÞþBf 2ðxðt�τðtÞÞ; tA ½lT ; lTþδÞ;
_xðtÞ ¼ �CxðtÞþAf 1ðxðtÞÞþBf 2ðxðt�τðtÞÞ; tA ½lTþδ; ðlþ1ÞTÞ;
xðtÞ ¼φðtÞ; 8 tA ½�τ;0�:

8><
>:

ð5Þ

Definition 1. System (1) is said to be exponentially stabilizable via
intermittent state feedback control (4), if there exist α40 and N
40 such that the solution xðt;φÞ of system (5) satisfies

Jxðt;φÞJrNe�αt JφJ : 8 tZ0;

where JφJ ¼ suptA ½�τ;0� JφðtÞJ :
We introduce the following lemmas, which will be used in the

proof of the main results.

Lemma 1. (Free-matrix-based integral inequality [54]). Let x : ½α;β�
-Rn be a differentiable function. For symmetric matrices RARn�n, X,
ZAR3n�3n, and any matrices YAR3n�3n, N1, N2AR3n�n satisfying

X Y N1

n Z N2

n n R

2
64

3
75Z0

the following inequality holds:

�
Z β

α
_xT ðsÞR _xðsÞdsrϖTΩ̂ϖ ð6Þ

where

Ω̂ ¼ ðβ�αÞðXþ1
3 ZÞþSym N1G1þN2G2f g;

G1 ¼ e1�e2; G2 ¼ 2e3�e1�e2;
e1 ¼ ½I 0 0�; e2 ¼ ½0 I 0�; e3 ¼ ½0 0 I�;

ϖ ¼ xT ðβÞ xT ðαÞ 1
β�α

Z β

α
xT ðsÞds

" #T

Remark 2. As noted Remark 2 in [54], Lemma 1 includes Corollary
5 in [53], while the well-known Jensen inequality is a special case
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