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a b s t r a c t 

Combinatorially complex problems are often optimised with heuristic solvers which gener- 

ally provide acceptable results but no indication as to how the quality achieved compares 

to the best possible. In previous work we have introduced Predictive Diagnostic Optimisa- 

tion (PDO), a heuristic based on local search that provides information about the search 

space structure through a set of indicators whilst searching for the optimal solution. PDO 

can collect useful information about the search process, such as the variation in the num- 

ber of steps needed to locally optimise a random solution and the error between the ex- 

pected and actual qualities of the local optimum, known as the prediction error. Given 

previous experimental results on the quadratic assignment problem, it appears that a high 

prediction error coincides with lower search quality and vice versa. This work confirms 

this assumption with the help of two additional problems but also shows that the reliabil- 

ity of the prediction error is challenged by structural properties that lead to a homogene- 

ity of the optima basins. Conversely, a high variation in the number of steps that lead to 

the local optima increases the reliability of the prediction error as an indicator of search 

quality. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Combinatorial optimisation problems often have too many potential solutions to be solved with an exact approach. It 

is customary to apply heuristic search methods such as Evolutionary Algorithms, Swarm-inspired methods or GRASP algo- 

rithms. A considerable body of research has been devoted to comparative studies of such algorithms when applied to par- 

ticular problems. Such experimentation often lacks scientific rigour [3] and does not succeed in uncovering the underlying 

causes of different algorithm performances [20] . In the absence of knowledge about the interaction between problem and 

solver, it is impossible to extract generalisable results that are helpful in judging the potential of an algorithm for solving a 

new problem. 

It is customary to cite Wolpert and Macready [60] in this context to underline the argument that different heuristics (and 

their comparisons) are necessary because algorithms that perform well on one type of problem perform badly on others: 

‘[NFL theorems] ... demonstrate that if an algorithm performs well on a certain class of problems then it necessarily pays for 

that with degraded performance on the set of all remaining problems.’ (Emphasis added.) Since the field of heuristic algo- 

rithms for combinatorial optimisation generally only considers one specific class of problems - multimodal problems with 
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gradients a heuristic can follow - Wolpert and Macready’s theorem cannot be assumed to have any bearing. Their study 

emphasises: ‘In particular, if an algorithm performs better than random search on some class of problems then it must per- 

form worse than random search (sic) on the remaining problems.’ If this was applicable to the subset of problems researchers 

generally quote it for, we would find that, say, Genetic algorithms perform exceedingly well on bin packing problems while 

they are unusable with quadratic assignment problems. This is evidently not the case - generally, in experimental studies, 

all heuristics applied outperform random search. 

Even so, in many cases even small improvements one heuristic achieves over another can be relevant to a practitioner. 

The practice of tuning an algorithm and comparing it with many existing algorithms is wasteful - given a new problem, the 

same procedure has to be repeated. Moreover, the subset of instances used for the comparison may not be representative 

of the actual instances in need of a solution [45] . Recognising these problems, some researchers study the properties of 

problems to establish features which render them particularly suitable for a search by a specific algorithm. 

Initially, researchers examined properties of individual problems in an attempt to find the features that make them 

difficult to solve, such as the variation of distance matrices for TSP [43] or QAP [33] . More recently, authors have attempted 

to mine a number of properties for a diverse set of problem instances and subsequently extract the most expressive ones 

using a statistical technique [29,45,46] 

In fitness landscape analysis, an active research area since the early 1990s, researchers interpret properties of the prob- 

lem’s fitness landscape which arises from the search operator used to improve solutions incrementally. In many cases, the 

search operator is applied randomly to establish the continuity of fitness development in the absence of a search bias, as 

does autocorrelation [1] . Other approaches measure landscape properties in connection with a given heuristic, such as the 

negative slope coefficient [52] , which follows solutions while they are being optimised by an Evolutionary algorithm (EA). 

In all of these approaches, the principal goal is to determine which of a variety of algorithms are most likely to produce the 

best outcome. 

In previous work [34] , we have introduced Predictive Diagnostic Optimisation (PDO), an iterated local search method 

designed to estimate the difficulty of the search as the optimisation progresses, with the goal of providing information about 

the relative quality of the solutions achieved by the search. Although the PDO indicators have shown a good correlation with 

result quality on many QAP instances, the method has not been tested on other problems. The current work remedies this, 

providing an interpretation of a number of indicators collected during the search on QAP, the linear ordering problem (LOP) 

and the permutation flow-shop scheduling problem (PFSP), which are described in Section 4.1 . 

After a review of the major approaches in fitness landscape characterisation in Section 2 , we provide a brief overview 

of the PDO approach in Section 3 . Section 4 explains how the experiments were conducted on a representative instance 

set of the problems. The results section correlates the three PDO indicators with the optimal quality found, including three 

additional indicators which add detail to the characterisation results. 

2. Fitness landscape characterisation 

The concept of fitness landscape relates the topological description of the search space of a problem with the dynamics 

of search algorithms. Formally, a fitness landscape is represented by a triplet { S , N , F } where [40,47,49] : 

(i) S is the set of potential solutions for the given problem, also known as the search space . 

(ii) N is neighbourhood relation, defined as a subset of S × S . Two solutions are neighbours (i.e. 〈 s , s ′ 〉 ∈ N ) if it is possible 

to reach one solution by applying a search operator to the other. 

(iii) F : S → � is the fitness or objective function that assigns a real value to each solution, which defines its relative 

quality. 

As the neighbourhood of a solution depends on the operator employed, different operators give rise to different land- 

scapes. Finding the best suited heuristic for a problem can also be seen as the problem of finding a heuristic able to create a 

landscape with the most helpful gradients to exploit, which arise from the changes in fitness incurred from each incremental 

change of the solution at hand. 

2.1. Features of fitness landscapes 

As contemporary heuristics attempt to exploit gradients towards optima, from the point of view of the search and using 

the terminology for minimisation, local optima form basins of attraction which heuristics are expected to find. Considering 

the search space S and a neighbourhood relation N , a local optimum is considered a solution s ∈ S such that for all solutions 

in the neighbourhood ∀〈 s , s ′ 〉 ∈ N , F ( s ) < F ( s ′ ), considering a minimisation problem. A global optimum is a solution s ∈ S 

such that for all solutions in the search space ∀ s ′ ∈ S , F ( s ) < F ( s ′ ). 

2.2. Modality 

Unimodal fitness landscapes have a single optimum which can be reached from every solution to the problem sim- 

ply by applying a local search algorithm. The algorithm makes improving changes to a given solution until it is optimal. 

Problem difficulty arises from multimodality, where the search landscape has interrupted gradients which end at numerous 
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