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a b s t r a c t

Recently, graph-based semi-supervised learning (SSL) becomes a hot topic in machine learning and
pattern recognition. It has been shown that constructing an informative graph is one of the most
important steps in SSL since a good graph can significantly affect the final performance of learning
algorithms. This paper has the following main contributions. First, we introduce a new graph con-
struction method based on data self-representativeness and Laplacian smoothness (SRLS). Second, this
method is refined by incorporating an adaptive coding scheme aiming at getting a sparse graph. Third,
we propose two kernelized versions of the SRLS method. A series of experiments on several public image
data sets show that the proposed methods can out-perform many state-of-the-art methods. It is shown
that Laplacian smoothness criterion is indeed a powerful tool to get informative graphs.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Most real world data can have a graph structure that describes
the pairwise similarity or relationship among samples. It is rea-
lized that data graphs are a natural way to represent the data [1–
5]. Graph-based methods operate on a data driven graph [6–13]. In
the graphs, the nodes correspond to data samples and the
weighted edges between nodes encode the similarity between
two nodes.

The most common way to construct a graph, or equivalently to
estimate its affinity matrix, is to construct k-nearest neighbor
graphs [14] or ε-neighborhoods graphs. Then edge weights are
estimated using a similarity function that quantifies the relation-
ship between the sample and its neighbors. It is noticed that the
parameter setting in these two kinds of methods will heavily
influence the final task performance [15]. Indeed, there is no
simple way that can predict the best parameter setting for these
methods. Jebara et al. [7] propose a graph construction method by
b-matching in order to force that all the nodes will have the same
degree (degree means the number of the edges connected to the
node). In the past decade, different coding schemes and code book
generation methods have been proposed.

In [16], the authors aim at constructing hard graphs using a
similar criterion used by [17]. In this work, the neighborhood
selection and edge weighting are performed in a single step; the
edge weight matrix is symmetric and only non-negative edge
weights are allowed. The edge weights are computed using a
constraint that forces the degree, or the weighted degree of every
node, to be equal to or greater than one. The authors devise a
quadratic program that computes the non-negative weights. In
order to avoid the non-tractability of solution, the graph is incre-
mentally constructed by solving quadratic programs with a subset
of edges.

Wang et al. [8] use a similar criterion as Locally Linear
Embedding (LLE) to construct the graph by calculating the weights
between pairs of samples. Wei et al. [9] define a neighborhood
preserving graph based on LLE criterion for semi-supervised
dimensionality reduction. Sparse representation is a widely used
technique which assumes that the complex signal can be repre-
sented by some basic signals. Qiao et al. [11] construct an ℓ1 graph
with weighted edges using the coefficients of the sparse coding
based on the theory of sparse representation and apply it to a
locality preserving projection method for human face recognition.
Yan et al. [18] also use the coefficients of sparse representation to
construct the graph for semi-supervised classification [19] and
multi-label classification [20].

Moreover, different from the sparse representation, Waqas
et al. [21] proposed collaborative neighborhood representation
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(CNR) based on ℓ2 norm minimization. Thus, graph construction
using the coefficients of CNR is also a good choice. Locality-
constrained Linear Coding (LLC) [22] is another algorithm for
data representation. Based on CNR and LLC, Dornaika et al. pro-
posed a graph construction method named weighted regularized
least square [2] and a two phase method in paper [23].

Many graph based semi-supervised learning (SSL) methods
have been proposed [24–26] which can broadly fall into main two
categories: (i) those that use the graph structure to spread labels
from labeled samples to unlabeled ones and (ii) those that opti-
mize a loss function based on smoothness constraints derived
from the graph. The researches in graph based SSL have achieved
many progresses in many real applications such as speech recog-
nition, text categorization, protein structure prediction, face
recognition, and so on.

Compared to the normal semi-supervised learning [27–29],
graph based SSL methods have the following advantages over
other approaches:

1. For many applications, graph based SSL performs better than
most other SSL algorithms in comparative evaluations.

2. Most graph based methods have a convex objective thereby
function providing convergence guarantees, making them attrac-
tive for solving large-scale problems.

3. For many graph-based SSL approaches, optimizing the
objective can be achieved via message passing on graphs. Each
iteration of the algorithm consists of a set of updates to each graph
node. A node's updated value is computed based on the node's
current value as well as on the neighbors’ current set of values.

4. It is possible to derive simple fast heuristics that enable such
algorithms to scale to large parallel machines with good machine
efficiency.

Existing graph construction methods have the following
drawbacks and advantages:

� Graphs that are based on K Nearest Neighbor (KNN) paradigms
such as KNN graphs and Locally Linear Embedding (LLE) graphs
suffer from the fact that they need to specify the neighborhood
size in advance. This imposes that every node in the graph
should have the same number of edges. Constructing KNN
graph is efficient but the performance of post-graph learning
tasks can be poor.

� Graphs that are based on data self-representativeness with ℓ2
regularization are very often providing dense graphs that are
not very informative in general.

� Sparse graphs adopting ℓ1 regularization provide sparse graphs
that proved to be very powerful in many real learning problems.
However, their computational load can be very expensive.
Moreover, it is not clear if sparse graphs take into account data
locality.

In this paper, we propose a new graph construction method
based on data self-representativeness and Laplacian smoothness
(SRLS). More precisely, we introduce a natural constraint for
graph construction adopting data self-representativeness.
Indeed, Laplacian smoothness criterion seems to be a powerful
graph regularizer that has not been exploited in existing graph
construction methods. In papers [30] and [31], the authors
introduce a Laplacian sparse coding. The objective of their work
is to obtain a dictionary and the corresponding sparse repre-
sentation matrix of the data assuming that the data graph is
known in advance. Unlike their work, our proposed method
addresses the estimation of the affinity matrix of the graph. We
assume that the dictionary is given by the original data set since
we adopt data self-representativeness principle for pairwise
similarity. The Laplacian smoothness is a part of the criterion to
be optimized. Thus, the goal of SRLS is to obtain the unknown

graph that simultaneously respects data self-representativeness
and Laplacian smoothness. To the best of our knowledge, our
work is the first attempt to construct graphs that adopt both
criteria.

The remainder of the paper will be organized as: in the second
section, some related work will be introduced. In the third section,
the proposed method is presented. In the fourth section, we
introduce two kernel versions of the proposed method. In the fifth
section, we show some experiments on several real data sets to
prove the efficiency of the proposed methods. In the last section,
some conclusions will be drawn.

2. Related work

2.1. Traditional graph construction methods

k-nearest neighbor graphs and ε-neighborhoods’ graphs are
two traditional graph construction methods. Let the original data
set be denoted by X¼ x1; x2;…; xn½ �ARd�n.

kNN graphs: Samples xi, xj are connected by an edge if xi is in
xj's k-nearest neighborhood or vice versa. k is a parameter that
controls the density of the graph.

ε-neighborhoods graphs: Samples xi, xj are connected by an
edge if the distance dðxi; xjÞrε. The parameter ε controls neigh-
borhood radius.

After the edges are decided, similarity will be measured to
weigh the edges. The formula is shown in Eq. (1). For instance,

simðxi; xjÞ is set to 1 as a constant or simðxi; xjÞ ¼ e� J xi � xj J
2

σ2 , where σ
is a parameter.

Wij ¼
simðxi;xjÞ; xiAδkðxjÞ or xjAδkðxiÞ;
0; otherwise:

(
ð1Þ

where δkðxiÞ represents the set of xi's k-nearest neighbors.

2.2. LLE graph construction

Locally Linear Embedding (LLE) is a classic manifold learning
method. LLE preserves the neighborhood relationships of input
samples [17]. It exploits the local linear reconstructions by mini-
mizing the reconstruction error of the set of all local neighbor-
hoods in the input space. It is discovered that the linear coding
used by LLE can be used for the graph weight matrix construction.
The weigh matrix W can be obtained by minimizing the recon-
struction error:X
i

Jxi�Σxj AδkðxiÞWijxj J2: ð2Þ

2.3. ℓ1 Graph construction

In the traditional graph and the LLE based graph, it is needed to
choose the parameters to control the radius of neighborhood
while it is parameter-free in sparsity representation based graph.
Qiao et al. [11] and Yan and Wang [18] proposed sparsity repre-
sentation based graph construction methods in which every
sample is represented as a sparse linear combination of the rest of
input samples and the coefficients are considered as weights.

min Jsi J1;
s:t: xi ¼Xsi; ð3Þ

where si ¼ ½si1;…; si;i�1;0; si;iþ1;…; sin�T is an n-dimensional vector
in which the i-th element is equal to zero (implying that the xi is
removed from X), and the elements sij; ja i denote the contribu-
tion of each xj to reconstructing xi.
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