
Information Sciences 372 (2016) 313–331 

Contents lists available at ScienceDirect 

Information Sciences 

journal homepage: www.elsevier.com/locate/ins 

Some novel approaches on state estimation of delayed neural 

networks 

� 

Kaibo Shi a , b , c , ∗, Xinzhi Liu 

c , Yuanyan Tang 

b , Hong Zhu 

d , Shouming Zhong 

e 

a School of Information Science and Engineering, Chengdu University, Chengdu, 610106, China 
b Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Taipa 853, Macau, China 
c Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1, Canada 
d School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China 
e School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China 

a r t i c l e i n f o 

Article history: 

Received 19 January 2015 

Revised 16 August 2016 

Accepted 19 August 2016 

Available online 20 August 2016 

Keywords: 

Neural networks 

State estimation 

Time-varying delay 

Delay-partition approach 

Linear matrix inequalities (LMIs) 

a b s t r a c t 

This paper studies the issue of state estimation for a class of neural networks (NNs) with 

time-varying delay. A novel Lyapunov-Krasovskii functional (LKF) is constructed, where 

triple integral terms are used and a secondary delay-partition approach (SDPA) is em- 

ployed. Compared with the existing delay-partition approaches, the proposed approach can 

exploit more information on the time-delay intervals. By taking full advantage of a modi- 

fied Wirtinger’s integral inequality (MWII), improved delay-dependent stability criteria are 

derived, which guarantee the existence of desired state estimator for delayed neural net- 

works (DNNs). A better estimator gain matrix is obtained in terms of the solution of linear 

matrix inequalities (LMIs). In addition, a new activation function dividing method is devel- 

oped by bringing in some adjustable parameters. Three numerical examples with simula- 

tions are presented to demonstrate the effectiveness and merits of the proposed methods. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Neural networks (NNs) have attracted a great deal of attention in recent years due to their important applications 

in many applied fields such as pattern recognition, signal processing, adaptive control, and combinatorial optimization 

[6,11,13,20,40,43,46] . Their dynamical behaviors, such as stability, attraction, and oscillation, have become hot research topics 

studied by numerous researchers around the globe. But in practical applications, stability is a key property needed in the 

design of NNs. 

In the implementation of NNs, it is often inevitable to introduce time delay in the signals transmitted among neurons 

[16,47,48,52] . Hence it is practical to study delayed neural networks (DNNs). DNNs have achieved high recognition for speech 

data and have the ability to tolerate the time lag caused by variation in the phoneme extraction position (time-shifting in- 

variance) [18] . It is also used to capture the temporal relationship between predictions on continuous instances of facial 

expression video recording [27] . However, time delay may cause instability, oscillation, or poor performance of NNs. There- 

fore, the stability problem of DNNs has been recognized as an important issue. Numerous important and interesting research 
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results have been developed in [3–5,21,38,41] . Based on a linear matrix inequality (LMI) approach, the global asymptotical 

stability analysis for a class of stochastic NNs with mixed time delays was investigated in [37] . By making full use of the in- 

formation of neuron activation function, a new exponential criterion was proposed in [39] . The authors in [42] discussed the 

problem for robust exponential stability for a class of uncertain stochastic NNs with multiple delays by using free-weighing 

matrix method. The issue of dissipativity analysis of memristor-based complex-valued NNs with time-varying delays was 

studied in [26] . 

Although DNNs have been used as viable network models the neuron states are seldom fully available in the network 

outputs, especially in relatively large-scale NNs. Consequently, neuron state estimation becomes an important research topic 

in many practical applications. Paper [36] studied the state estimation problem for NNs with time-varying delay through 

available output measurements. Since then, the investigation of the state estimation in the case of DNNs has gained rapid 

development. A number of available measurements and kinds of valid methods have been proposed in [8–10,12,45,51] . For 

instance, a delay-dependent criterion was developed to estimate the neuron states through available output measurements 

and the free-weighting matrix approach in [8] . However, the obtained stability criterion in [8] was presented in terms of a 

matrix inequality, rather than an LMI, which corresponds to a nonlinear programming problem and is generally very difficult 

to deal with. Paper [9] considered the robust state estimation problem for a class of uncertain DNNs based on a bounding 

technique. Different from the assumptions in [8] , the boundedness of the time-varying delay was only required by defining a 

new LKF in [10] . New delay-dependent stability criteria for DNNs were obtained by using a delay-partition approach (DPA) in 

[12,45,50,51] . The advantage of this approach is that less conservative stability criteria can be achieved without introducing 

any slack variables. 

In order to reduce ulteriorly the conservatism of stability criteria for DNNs, the reciprocally convex optimization tech- 

nique [31,32] was fully applied to the DPA in [7,42] . Alternatively, inspired by the above division, the activation function 

dividing approach was proposed to study the problem of delay-dependent stability criteria for DNNs in [19,24] . By intro- 

ducing a tuning parameter, this approach in [19] was modified for investigating an extended dissipative analysis of DNNs in 

[24] . Besides, other effective methods were utilized, such as a suitable LKF including double and triple integral terms [23] , 

zero equalities and reciprocally convex approach [25] , free-weighting matrix technique [17,33] , a new convex combination 

technique [1,49] and a decoupling technique [14] . However, these results appear to have some common shortcomings. On 

the one side, the relationship between time-varying delay and each subinterval is not taken sufficiently into account. On 

the other side, some useful integral terms and more information of neuron activation functions are not well utilized, see 

[9,10,12,51] , which may obtain a smaller time-delay upper bound to a certain extent. 

Motivated by the proceeding discussion, we investigate, in this paper, the state estimation problem of NNs with time- 

varying delay and establish some less conservative results by using some more effective methods and novel approaches. The 

main contribution of this paper lies in the following three aspects. In the first place, different from the existing methods 

in [19,24] , we propose a general bounding partitioning method of activation function by introducing n variable parameters, 

which plays a key role in obtaining less conservative stability conditions. Moreover, the methods in references [19,24] can 

be considered as special cases of the proposed approaches in this paper. In the second place, in order to obtain new stability 

results, a more general SDPA is proposed for constructing an augmented LKF, which is not used in [19,24] . The total interval 

of the time-varying delay is divided into two alterable subintervals, and then each subinterval is further divided into two 

variable parts. Compared with the approaches in [7,12,34,45,50,51] , the proposed approach is able to take full account of the 

relationship between time-varying delay and each subinterval. In the third place, by using a MWII, which is less conservative 

than the celebrated Jensen’s inequality used in [7,12,19,24,34,45,50,51] , the state desired estimator can be achieved by solving 

a set of LMIs. Finally, three examples are given to demonstrate the effectiveness and advantages of the developed results. 

Notations: Notations used in this paper are fairly standard: Let R be the real line, I the identity matrix of appropriate 

dimensions, A 

T the matrix transposition of the matrix A , B 

−1 the inverse matrix of the matrix B . By X � 0 (respectively 

X � 0), for X ∈ R 

n ×n , we mean that the matrix X is real symmetric positive definite (respectively, positive semi-definite); 

diag { r 1 , ���, r n } diagonal matrix with diagonal elements r i , i = 1 , · · · , n, the symbol ∗ represents the elements below the 

main diagonal of a symmetric matrix, 
−→ 

S is defined as 
−→ 

S = S + S T . 

2. Preliminaries 

Consider the following NNs with time-varying delay: 

˙ x (t) = −W 0 x (t) + W 1 g (x (t)) + W 2 g (x (t − d(t))) + J , 

y (t) = Cx (t) + ̃

 g (t , x (t )) , (1) 

where x (t) = [ x 1 (t ) , · · · , x n (t )] T ∈ R 

n is the neuron state vector, g (x (t)) = [ g 1 (x 1 (t)) , · · · , g n (x n (t))] T ∈ R 

n is the neuron 

activation function, and J = [ J 1 , · · · , J n ] 
T ∈ R 

n is an external constant input vector. W 0 = diag{ w 01 , · · · , w 0 n } � 0 , W 1 ∈ R 

n ×n 

is the interconnection weight matrix, W 2 ∈ R 

n ×n is the delayed interconnection weight matrix, and C ∈ R 

m ×n is the output 

weight matrix. y (t) ∈ R 

m is the measurement output of the networks, ˜ g (t, x (t)) : R × R 

n → R 

m is the neuron-dependent 

nonlinear disturbance on the network outputs, and d ( t ) is the time-varying discrete delay. 
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