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a b s t r a c t 

The cooperative coevolutionary (CC) approach can be very effective in solving problems 

of large-scale continuous optimization (LSGO) through their decomposition into lower- 

dimensional subcomponents. However, it is well known that the CC performance can be 

significantly influenced by the adopted decomposition. Moreover, since the method may 

require evolving a number of populations, also the size of the latter can largely affect the 

optimization process. In this article, focusing on equally sized decompositions, we present 

the results of an in-depth investigation concerning the effects of both the size of popu- 

lations and the dimensionality of subcomponents on the performance of a CC optimizer. 

According to our study, in several cases only a small set of suitable configurations corre- 

sponds to a high optimization performance. Furthermore, we propose a new CC algorithm 

in which part of the available computational budget is spent for adapting both the dimen- 

sionality of subcomponents and the number of evolved individuals during the optimization 

process. Using a rich set of benchmark problems, we show that the proposed approach can 

outperform a state-of-the art algorithm based on adaptive equally sized decompositions. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

In recent years, the study of effective and efficient search strategies to address high-dimensional optimization problems 

in the continuous domain has been recognized as a relevant field of research, which is often referred to as Large-Scale 

Global Optimization (LSGO) [18,22] . At present, a variety of approaches have been proposed to effectively address LSGO 

problems by improving the scalability of evolutionary optimizers [22,44] . Among the most successful algorithms, there are 

those based on Cooperative Coevolution (CC), which is a divide-and-conquer strategy originally proposed by Potter and De 

Jong in [31] . An algorithm based on CC decomposes the original high-dimensional problem into a set of lower-dimensional 

subcomponents , which should be easier to deal with. Inside each subcomponent, population-based evolutionary optimizers 

operate independently, except for fitness evaluations, which require a cooperation in terms of information exchange. 

According to the literature, the CC approach has been successfully tested with several optimizers, such as Genetic Algo- 

rithms [31] , Particle Swarm Optimization (PSO) [6,19,30,45] , Ant Colony Optimization [5] , Simulated Annealing [36] , Differ- 
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ential Evolution (DE) [38,47] , Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [20,24] , Firefly Algorithm [42] and 

many others. 

Clearly, the underlying optimizer, together with its parameters setting, population size and initialization, provide different 

optimization powers with different problems and, thus, strongly influence the search performance of a CC algorithm. 

Moreover, high-dimensional continuous problems admit a number of possible decompositions, which typically corre- 

spond to a different CC optimization efficiency. A well-known issue related to the decomposition of search space may origi- 

nate from the presence of interacting variables [31,32] : placing them into different subcomponents may cause a significant 

decay of the optimization performance. For this reason, automatic decomposition methods have been developed for dealing 

with problems in which subsets of interacting variables can be recognized and grouped together [1,11,24,27,28,39,43] . Never- 

theless, the resulting groups of variables may still give rise to high-dimensional problems, for which a further decomposition 

can be useful. In addition, many LSGO problems are either fully separable (i.e., they do not contain interacting variables) or 

fully non-separable (i.e., all the variables interact with each other). For such cases, a typical decomposition approach consists 

of placing the same number of variables in each subcomponent. However, also the resulting common size of subcomponents 

may significantly affect the search efficiency of a given optimizer used within a CC algorithm [29] . 

For the above reasons, researchers devised CC algorithms able to adapt the size of subcomponents during the search 

process. According to the literature, the problem has been first addressed by Yang et al. in [48] and, more recently, by 

Omidvar et al. in [29] through an adaptive approach based on a reinforcement learning (RL) technique [40] . Unfortunately, 

as noted in [29] , learning a suitable size of subcomponents trough RL is not easy due to the non-stationary nature of the 

evolutionary process. In addition, previous research work neglected to consider the combined effect of both subcomponents 

size and number of individuals composing the corresponding populations, which can have instead a significant influence in 

the case of a CC algorithm. Indeed, differently from an ordinary evolutionary optimizer based on a single population, CC may 

involve a number of populations. Thus, when there is an overall constraint on the available computational budget, choosing 

a suitable number of individuals to evolve in each population can be much more critical to the optimization process. 

Focusing on the issue of equally sized subcomponents, in this article we make two contributions. Firstly, using a suite 

of LSGO benchmark problems, we present and discuss a comprehensive computational study on the effect that the chosen 

configuration of subcomponents (i.e., their size and number of evolved individuals) may have on the search performance 

of a standard CC optimizer. In particular, we show that choosing the correct configuration may be crucial in determining 

the success of the optimization. As a second contribution, we present a new approach to address the difficult problem of 

adapting the configuration of subcomponents in a CC algorithm. In the proposed method, a pool of alternative configurations 

operate in parallel during short comparison phases . Such an approach, compared with the use of one decomposition size 

at a time, as proposed in [29,48] , enables a more reliable evaluation of the candidate configurations. Using a numerical 

investigation, we show that the proposed algorithm can outperform the most effective method previously presented in the 

literature. 

The article is organized as follows. Section 2 outlines a typical CC optimizer. Then, Section 3 provides a background 

on the most relevant methods dealing with the adaptation of subcomponents size. In Section 4 , we describe in detail the 

proposed approach. Section 5 contains a comprehensive computatonal study in which: ( i ) we highlight the importance of 

selecting a suitable configuration for the CC algorithm; ( ii ) we investigate the proposed algorithm using a well-known suite 

of benchmark LSGO problems, also comparing the proposed approach with a state-of-the-art algorithm for adaptive equally 

sized decomposition. Section 6 concludes the article and outlines possible future work. 

2. Cooperative coevolution 

We consider the following minimization problem: 

min f = F ( x ) , x ∈ S (1) 

where S ⊆ R 

d denotes the search space with d variables and F : S → R is a real-valued objective function. The CC idea 

[31] consists of partitioning the d -dimensional set of search directions G = { 1 , 2 , . . . , d} into k sets G 1 . . . G k . Each group G i 

of variables corresponds to a new search space S ( i ) for the problem defined by Eq. (1) , in which the remaining variables x j , 

with j �∈ G i , are kept constant. Thus, the whole search procedure is decomposed into k subcomponents associated to lower- 

dimensional problems, which are typically addressed through population-based evolutionary algorithms. 

The latter can be executed independently within each subcomponent, except when evaluating the fitness function F . In 

fact, a candidate solution in S ( i ) contains only some elements of the d -dimensional vector x ∈ S . Thus, in the CC strat- 

egy a common d -dimensional context vector b is built using a representative individual (e.g., the current best) provided by 

each subcomponent. Then, the candidate solutions are evaluated by complementing them through the appropriate elements 

of the context vector. In practice, the cooperation consists of using a common vector in which the subcomponents make 

available their contribution for the fitness evaluation of all individuals. 

After the first applications presented in [31] , researchers found that the CC approach can significantly improve the scal- 

ability of an evolutionary optimizer as the problem dimensionality increases [21] . 

In the original implementation, the d -dimensional problem was decomposed into d sub-populations (i.e., G i = { i } ). Subse- 

quently, the idea was generalized by introducing a decomposition of the original d -dimensional search space into k subcom- 

ponents with the same dimension d k = d/k [45] . Such an approach can be formalized by defining the groups of dimensions 
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