Inverse P-information Law Models and The Reality-camouflage Intelligent Transformations of Information Image

Ling ZHANG School of Information Engineering Longyan University Longyan, China zl79024@163.com

> Kaiquan SHI School of Mathematics Shandong University Jinan, China shikq@sdu.edu.cn

Abstract—By improving function inverse P-sets, inverse Pinformation law model and its structures are proposed. Then attribute disjunctive expansion-contraction generations of inverse P-information law models are presented. Furthermore, inverse P-information reasoning and reasoning structures are proposed Finally intelligent generating theorems of information law are proposed, the reality-camouflage intelligent transformations of information image and their intelligent generations and applications are also given.

Keywords— inverse P-information law ; function inverse Pset; attribute disjunction; inverse P-information law reasoning

I. INTRODUCTION

Function inverse P-sets [1,2], namely function inverse packet sets, are theoretical models obtained by improving inverse P-sets [3,4]. Function inverse P-set is a set pair, denoted by $(\overline{S}^F, \overline{S}^{\overline{F}})$, it is composed by function internal function internal inverse packet set \overline{S}^{F} function outer inverse packet set $\overline{S}^{\overline{F}}$. $\forall s_i \in \overline{S}^{\overline{F}}$ and $\forall s_i \in \overline{S}^{\overline{F}}$, s_i and s_i are functions, the attribute α_i of $s_i \in \overline{S}^F$ or the attribute α_i of $s_i \in \overline{S}^{\overline{F}}$ satisfies attribute disjunctive normal form. In this article, function $s_i \in \overline{S}^F$ or $s_i \in \overline{S}^{\overline{F}}$ is defined as information law $\overline{w}(x)_i$ or $\overline{w}(x)_i$. The main tasks of this paper are as follows: By improving function inverse P-set, proposes inverse P-information law models, and gives the expansion-contraction relationships between inverse P-information law and its attribute disjunction normal form; proposes inverse P-information law reasoning; gives the intelligent generation theorems of information law ; gives the realitycamouflage intelligent transformations of information image and its applications.

Xuefang REN School of Information Engineering Longyan University Longyan, China renxf0311@163.com

For the convenience of discussion, the concepts of function inverse P-sets are introduced in section 2 as the preparation.

II. FUNCTION INVERSE P-SETS AND THEIR ATTRIBUTE DISJUNCTIVE CHARACTERISTICS [1, 2]

Given finite ordinary function set $S = \{s_1, s_2, \dots, s_q\} \subset U$,

and its attribute set $\alpha = \{\alpha_1, \alpha_2, \dots, \alpha_k\} \subset V$. \overline{S}^F is called function internal inverse packet set generated by *S*, or internal inverse P-set for short, moreover,

$$\overline{S}^F = S \bigcup S^+ \tag{1}$$

Where in (1) $S^+ = \{u_i \mid u_i \in U, u_i \in S, f(u_i) = s'_i \in S, f \in F\}$, if the attribute set α^F of \overline{S}^F satisfies

$$\alpha^{F} = \alpha \bigcup \{ \alpha'_{i} \mid f(\beta_{i}) = \alpha'_{i} \in \alpha, f \in F \}$$
(2)

 $\overline{S}^{\overline{F}}$ is called the outer inverse packet set of *S*, or called function outer inverse P-set for short, moreover,

$$\overline{S}^{\overline{F}} = S - S^{-} \tag{3}$$

Where in (3), $S^- = \{s_i \mid s_i \in S, \overline{f}(s_i) = u_i \in S, \overline{f} \in \overline{F}\}$, if the attribute set $\alpha^{\overline{F}}$ of $\overline{S}^{\overline{F}}$ satisfies

$$\alpha^{\overline{F}} = \alpha - \{\beta_i \mid \overline{f}(\alpha_i) = \beta_i \in \alpha, \overline{f} \in \overline{F}\}$$
(4)

Where the meanings of $F, \overline{F}, f, \overline{f}$ can be found in Ref.[1,2].

The set pair $(\overline{S}^F, \overline{S}^{\overline{F}})$ composed by \overline{S}^F and $\overline{S}^{\overline{F}}$ is the function inverse P-set generated by *S*. Set $\{(\overline{S}_i^F, \overline{S}_i^{\overline{F}}) | i \in I, j \in J\}$ is the function inverse P-set family.

Attribute disjunctive normal form characteristics of Function inverse P-sets

Given finite ordinary function set $S = \{s_1, \dots, s_q\}$, $\alpha = \{\alpha_1, \dots, \alpha_p, \alpha_{p+1}, \dots, \alpha_q\}$ is the attribute set of *S*, for $\forall s_{\lambda} \in S$, the attribute α_{λ} of s_{λ} satisfies attribute disjunctive normal form $\alpha_{\lambda} = \alpha_1 \lor \alpha_2 \lor \dots \lor \alpha_q$.

If attributes $\alpha_{q+1}, \dots, \alpha_r$ are supplemented into α , then α becomes $\alpha^F = \alpha \bigcup \{\alpha_{q+1}, \dots, \alpha_r\} = \{\alpha_1, \dots, \alpha_r\}$, $S = \{s_1, \dots, s_q\}$ becomes $\overline{S}^F = S \bigcup \{s_{q+1}, \dots, s_r\} = \{s_1, \dots, s_r\}$, for $\forall s_i \in \overline{S}^F$, the attribute α_i of s_i satisfies attribute disjunctive normal form as follow:

$$\alpha_i = (\alpha_1 \lor \cdots \lor \alpha_q) \lor \alpha_{q+1} \lor \cdots \lor \alpha_q$$
$$= \alpha_1 \lor \alpha_2 \lor \cdots \lor \alpha_r$$

If attributes $\alpha_{p+1}, \alpha_{p+2}, \dots, \alpha_q$ are deleted from α , then α becomes $\alpha^{\overline{F}} = \alpha - \{\alpha_{p+1}, \dots, \alpha_q\} = \{\alpha_1, \dots, \alpha_p\}$, $S = \{s_1, \dots, s_p, s_{p+1}, \dots, s_q\}$ becomes $\overline{S}^{\overline{F}} = S - \{s_{p+1}, \dots, s_q\} = \{s_1, \dots, s_p\}$, for $\forall s_j \in \overline{S}^{\overline{F}}$, the attribute α_j of s_j satisfies attribute disjunctive normal form

$$\alpha_{j} = (\alpha_{1} \vee \cdots \vee \alpha_{p} \vee \alpha_{p+1} \vee \cdots \vee \alpha_{q}) - (\alpha_{p+1} \vee \cdots \vee \alpha_{q})$$
$$= \alpha_{1} \vee \alpha_{2} \vee \cdots \vee \alpha_{p}.$$

Assumption: In following sections, $S = \{s_1, \dots, s_p\}$, $\overline{S}^F = \{s_1, \dots, s_r\}$, and $\overline{S}^{\overline{F}} = \{s_1, \dots, s_p\}$ are denoted by $w_o(x) = \{w(x)_1, \dots, w(x)_q\}$, $\overline{w}_o(x)^F = \{w(x)_1, \dots, w(x)_r\}$, and $\overline{w}_o(x)^{\overline{F}} = \{w(x)_1, \dots, w(x)_p\}$ respectively, p < q < r.

III. INVERSE P-INFORMATION LAW AND ITS ATTRIBUTE DISJUNCTION EXPANSION-CONTRACTION RELATIONSHIPS

Definition 1 Given $W_{\circ}(x) = \{w(x)_1, \dots, w(x)_q\}$, $\alpha = \{\alpha_1, \dots, \alpha_q\}$ is the attribute set of $W_{\circ}(x)$, function w(x) is called information law generated by $W_{\circ}(x)$, moreover

$$w(x) = \bigoplus_{i=1}^{q} w(x)_{i} = \sum_{i=1}^{n} y_{j} \prod_{\substack{i=1\\i\neq j}}^{n} \frac{x - x_{i}}{x_{j} - x_{i}}$$

$$= a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_{1} x + a_{0},$$
(5)

Where $w(x) = \bigoplus_{i=1}^{q} w(x)_i$ denotes the composite of $w(x)_1, w(x)_2, \dots, w(x)_q$, it is obtained by Lagrange interpolation on $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.

Suppose $\{y_{i,1}, y_{i,2}, \dots, y_{i,n}\}$ is discrete value set formed by the discrete values of $w(x)_i \in W_o(x)$, $i = 1, 2, \dots, q$. $\mathbf{y} = (y_1, y_2, \dots, y_n) = \left(\sum_{i=1}^q y_{i,1}, \sum_{i=1}^q y_{i,2}, \dots, \sum_{i=1}^q y_{i,n}\right)$ is the discrete value vector of w(x), $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ are obtained by \mathbf{y} .

Definition 2 Given $\overline{W}_{\circ}(x)^{F} = \{w(x)_{1}, \dots, w(x)_{r}\}$, α^{F} is attribute set of $\overline{W}_{\circ}(x)^{F}$, function $\overline{w}(x)^{F}$ is called internal inverse P-information law of $\overline{W}_{\circ}(x)^{F}$, moreover

$$\overline{w}(x)^{F} = \bigoplus_{i=1}^{r} w(x)_{i}$$

= $b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_{1}x + b_{0},$ (6)

if (6) is obtained by (5) on data points (x_1, y_1^f) , $(x_2, y_2^f), \dots, (x_n, y_n^f)$.

Where $(x_1, y_1^f), (x_2, y_2^f), \dots, (x_n, y_n^f)$ are the data points generated by the discrete value vector $\mathbf{y}^F = (y_1^f, y_2^f, \dots, y_n^f) = \left(\sum_{i=1}^r y_{i,1}, \sum_{i=1}^r y_{i,2}, \dots, \sum_{i=1}^r y_{i,n}\right)$ of $\overline{W}_{\circ}(x)^F$; α^F satisfies (2).

Definition 3 Given $\overline{W}_{o}(x)^{\overline{F}} = \{w(x)_{1}, \dots, w(x)_{p}\}$, $\alpha^{\overline{F}}$ is the attribute set of $\overline{W}_{o}(x)^{\overline{F}}$, function $\overline{w}(x)^{\overline{F}}$ is called outer inverse P-information law of $\overline{W}_{o}(x)^{\overline{F}}$, moreover

$$\overline{w}(x)^{F} = \bigoplus_{i=1}^{p} w(x)_{i}$$

$$= c_{n-1} x^{n-1} + c_{n-2} x^{n-2} + \dots + c_{1} x + c_{0}$$
(7)

if (7) is obtained by using (5) on data points $(x_1, y_1^{\overline{f}}), (x_2, y_2^{\overline{f}}), \dots, (x_n, y_n^{\overline{f}})$. Where $(x_1, y_1^{\overline{f}}), (x_2, y_2^{\overline{f}}), \dots, (x_n, y_n^{\overline{f}})$ are the data points generated by the discrete value vector $y^{\overline{F}} = (y_1^{\overline{f}}, \dots, y_n^{\overline{f}}) = \left(\sum_{i=1}^p y_{i,1}, \dots, \sum_{i=1}^p y_{i,n}\right)$ of $\overline{W}_o(x)^{\overline{F}}$; $\alpha^{\overline{F}}$ satisfies (4).

Definition 4 The information law pair $(\overline{w}(x)^F, \overline{w}(x)^F)$, composed by $\overline{w}(x)^F$ and $\overline{w}(x)^{\overline{F}}$, is called inverse Pinformation law; Set $\{(\overline{w}(x)_i^F, \overline{w}(x)_j^{\overline{F}}) | i \in I, j \in J\}$ is called the inverse P-information law family generated by $W_{\circ}(x)$.

Proposition 3 $w(x) - \overline{w}(x)^F \leq 0$; $w(x) - \overline{w}(x)^{\overline{F}} \geq 0$.

Proposition 4 $W_{\circ}(x)$ can generates multiple inverse Pinformation laws in the form of $(\overline{w}(x)^F, \overline{w}(x)^{\overline{F}})$ which constitute set $\{(\overline{w}(x)_i^F, \overline{w}(x)_i^{\overline{F}}) | i \in I, j \in J\}$. Download English Version:

https://daneshyari.com/en/article/4944818

Download Persian Version:

https://daneshyari.com/article/4944818

Daneshyari.com