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a b s t r a c t

The impulsive control method is utilized to achieve the synchronization of coupled reaction–diffusion
neural networks with time-varying delay. By combining the Lyapunov functional method with the
impulsive delay differential inequality and comparison principle, a few sufficient conditions are derived
to guarantee the global exponential synchronization of coupled neural networks with reaction–diffusion
terms. Especially, the estimate for the exponential convergence rate is also given, which relies on time
delay, system parameters and impulsive interval. Finally, numerical examples are provided to demon-
strate the correctness and effectiveness of our results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

As is well known, complex networks extensively exist in
diverse areas of real-life world, such as food webs, biological
neural networks, social networks, genetic regulatory networks,
electrical power grids, cellular networks, metabolic systems,
World Wide Web, and so on. Due to their broad applications, they
have been receiving a great deal of attention in the investigation of
topology and dynamical behavior for various complex networks.
Specifically, widespread attention has been centered on synchro-
nization problem about complex dynamical networks. Up to now,
a wide variety of interesting results on synchronization have been
derived for complex networks [1–8]. Cheng et al. [2] studied the
adaptive pinning synchronization of delayed complex networks
with nonlinear coupling by employing Lyapunov stability theory.
In [4], several criteria were derived to guarantee the synchroni-
zation of complex network model with fractional order chaotic
nodes by using the LaSalle invariance principle.

Up to date, many researchers have devoted much effort to
synchronization problem for arrays of coupled neural networks
(CNNs) because of its wide applications in different fields. For
instance, the linear coupled cellular neural networks have been
triumphantly applied to a secure communication system [9] and
the electronic circuits [10]. In [11], the authors presented an

architecture of CNNs to memorize and reproduce complex oscil-
latory patterns as synchronization states. Moreover, the research
about synchronization of CNNs is a significant step to comprehend
brain science [12]. Therefore, studying synchronization problem
about coupled neural networks has both practical and theoretical
significance [13–23]. Yang et al. [14] studied the finite-time syn-
chronization for an array of coupled neural networks with dis-
continuous activation functions and mixed delays. A few sufficient
conditions were gained to ensure finite-time synchronization of
the networks by designing suitable controller. In [15], the authors
investigated the exponential synchronization problem for coupled
fuzzy neural networks with mixed time-delays and disturbances
by utilizing some stochastic analysis methods. Song et al. [17]
analyzed the pinning synchronization of coupled delayed neural
networks with both constant and delayed couplings.

Nevertheless, in a lot of research works on coupled neural
networks [13–23], the diffusion effects are not yet taken into
account. Actually, the diffusion phenomena inevitably appear in
electric circuits and neural networks once electrons transport in a
nonuniform electromagnetic field [24,25]. Hence, it is extremely
important to investigate the synchronization in coupled neural
networks with reaction–diffusion terms [26–31]. Liu et al. [26]
analyzed the μ-synchronization and pinning control problems for
coupled reaction–diffusion neural networks (CRDNNs) with
unbounded time-delays and Dirichlet boundary conditions. In
[28], a sufficient condition ensuring synchronization was derived
by utilizing the correlation between output strict passivity and
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synchronization. Wang et al. [30] considered the adaptive syn-
chronization for an array of linearly CRDNNs with time delays.

Impulsive control technique has been widely applied to realize
stabilization and synchronization for nonlinear unstable dynami-
cal systems and chaotic systems. The major idea about impulsive
control is to change the states of continuous dynamic systems via
discontinuous control inputs at certain time instants. From the
control point of view, impulsive control method is effective and
robust in the research of stability analysis, since it needs only small
control gains. Moreover, utilizing the impulsive control method is
very advantageous in practical applications due to reduced control
cost [33]. More recently, a great deal of attention has been given to
impulsive control problem of neural networks with reaction–dif-
fusion terms [32–34]. Hu et al. [32] gave a few sufficient conditions
dependent on the diffusion coefficients to guarantee the global
exponential stability and synchronization of delayed reaction–
diffusion neural networks using the impulsive control strategy. In
[33], the authors considered the global exponential stability for
Cohen–Grossberg neural networks with reaction–diffusion terms
and Dirichlet boundary conditions via the impulsive control
method. Yang et al. [34] discussed the problem of stochastic syn-
chronization for reaction–diffusion neural networks under
impulsive controller with mixed delays. Several sufficient criteria
were established by means of the impulsive differential inequality
and the properties of random variables. Obviously, it is also ben-
eficial to apply the impulsive control method to analyze syn-
chronization problem for CRDNNs. Unfortunately, there are very
few results concerning the impulsive control for synchronization
of coupled reaction–diffusion neural networks. In [35], the authors
studied global exponential synchronization for linearly CRDNNs
with time-varying delays by adding impulsive controller to a small
fraction of nodes.

The main contributions of this paper are as follows. First, one
delay-independent global exponential synchronization condition
is derived by using impulsive delay differential inequality. Second,
two delay-dependent global exponential synchronization criteria
are established by means of suitable Lyapunov functionals and in
terms of several linear matrix inequalities. Third, the estimate for
exponential convergence rate is provided, which relies on time
delay, system parameters and impulsive interval.

The structure of this paper is organized as follows. In Section 2,
we introduce some necessary notations and a lemma, which will
be utilized throughout this paper. The major results of this paper
are obtained in Section 3. In Section 4, numerical examples are
given to show the effectiveness of the proposed results. We ulti-
mately draw our conclusions in Section 5.

2. Preliminaries

2.1. Notations

Ω¼ fx¼ ðx1; x2;…; xqÞT j jxk jo lk; k¼ 1;2;…; qg is an open
bounded domain in Rq with smooth boundary ∂Ω. PC½½�τ; þ1Þ;
R�≔fϕ : ½�τ; þ1Þ-R;ϕðtÞ is continuous everywhere except for
the points tk; kAN at which ϕðtþk Þ ¼ϕðtkÞ and ϕðt�k Þ existg. The
fixed moments tk satisfy 0¼ t0ot1ot2o⋯otko⋯ and
limk-þ1tk ¼ þ1; kAN, let Tk�1 ¼ tk�tk�1; Tmin ¼ infkANfTk�1g;
Tmax ¼ supkANfTk�1g. For any eðx; tÞ ¼ ðe1ðx; tÞ; e2ðx; tÞ;…; enðx; tÞÞT
ARn; ðx; tÞAΩ� R; Jeð�; tÞJ2 represents

Jeð�; tÞJ2 ¼
Z
Ω

Xn
i ¼ 1

e2i ðx; tÞdx
 !1=2

:

For any Ψ ðx; tÞ ¼ ðψ1ðx; tÞ;ψ2ðx; tÞ;⋯;ψnðx; tÞÞT ARn; ðx; tÞAΩ �½�τ;

þ1Þ, we can define

JΨ ð�; tÞJτ ¼ sup
�τrθr0

JΨ ð�; tþθÞJ2

for tA ½0; þ1Þ.

2.2. Lemma
Lemma 2.1. (see [33]) Let 0rτiðtÞrτi;σ40;miZ0;mAR;

i¼ 1;2;…;n. Assume that mþ lnσ
ρ þσsgnðlnσÞPn

i ¼ 1 mio0 and
uðtÞAPC½½�τ, þ1Þ;Rþ � satisfies

DþuðtÞrmuðtÞþ
Xn
i ¼ 1

miuðt�τiðtÞÞ; tZ0;

uðtkÞrσuðt�k Þ; kAN;

uðtÞ ¼ϕðtÞ; �τrtr0;

8>>>><
>>>>:
in which τ¼maxi ¼ 1;2;…;nfτig, and ϕðtÞ is bounded and continuous on
½�τ;0�, then
uðtÞrσsgnðlnσÞe�λt sup

� τr sr0
ϕðsÞ; tZ0;

where λ40 is a unique solution of

λþmþ lnσ
ρ

þσsgnðlnσÞXn
i ¼ 1

mieλτi ¼ 0;

in which ρZTmax if σo1, otherwise, ρrTmin;

sgnðlnσÞ ¼
�1 if σo1;
0 if σ ¼ 1;
1 if σ41:

8><
>:

Remark 1. In this paper, we always assume 0oTminrTmaxoþ1.
Lemma 2.1 is very significant for us to analyze the global exponential
synchronization of CRDNNs via impulsive control.

3. Main results

Consider a single reaction–diffusion neural network with
Dirichlet boundary conditions which is described as follows:

∂wiðx; tÞ
∂t

¼ diΔwiðx; tÞ�aiwiðx; tÞþ Jiþ
Xn
j ¼ 1

bijf jðwjðx; tÞÞ; ð1Þ

where i¼ 1;2;…;n, n is the number of neurons in the network;
x¼ ðx1; x2;…; xqÞT AΩ�Rq; wiðx; tÞAR is the state of the ith neu-
ron at time t and in space x; Δ¼ Pq

k ¼ 1
∂2
∂x2

k
is the Laplace diffusion

operator on Ω; di40 represents the transmission diffusion coef-
ficient along the ith neuron; ai40 denotes the rate with which the
ith neuron will reset its potential to the resting state when dis-
connected from the network and external input; Ji is a constant
external input; f jð�Þ represents the activation function of the jth
neuron; bij represents the strength of the jth neuron on the ith
neuron.

The initial value and boundary value conditions of system
(1) are given in the following form:

wiðx;0Þ ¼ϕiðxÞ; xAΩ; ð2Þ

wiðx; tÞ ¼ 0; ðx; tÞA∂Ω� ½0; þ1Þ; ð3Þ
where ϕiðxÞði¼ 1;2;…;nÞ is continuous and bounded on Ω.

In the paper, the function f jð�Þðj¼ 1;2;…;nÞ satisfies the Lip-
schitz condition, and there exists positive constant ρj such that

j f jðξ1Þ� f jðξ2Þjrρj jξ1�ξ2 j
for any ξ1; ξ2AR, where j � j is the Euclidean norm.

We can rewrite system (1) in a compact form

∂wðx; tÞ
∂t

¼DΔwðx; tÞ�Awðx; tÞþ JþBf ðwðx; tÞÞ; ð4Þ
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