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a b s t r a c t

Extreme learning machine (ELM) has emerged as an efficient and effective learning algorithm for clas-
sification and regression tasks. Most of the existing research on the ELMs mainly focus on supervised
learning. Recently, researchers have extended ELMs for semi-supervised learning, in which they exploit
both the labeled and unlabeled data in order to enhance the learning performances. They have incor-
porated Laplacian regularization to determine the geometry of the underlying manifold. However,
Laplacian regularization lacks extrapolating power and biases the solution towards a constant function.
In this paper, we present a novel algorithm called Hessian semi-supervised ELM (HSS-ELM) to enhance
the semi-supervised learning of ELM. Unlike the Laplacian regularization, the Hessian regularization that
favors functions whose values vary linearly along the geodesic distance and preserves the local manifold
structure well. This leads to good extrapolating power. Furthermore, HSS-ELM maintains almost all the
advantages of the traditional ELM such as the significant training efficiency and straight forward
implementation for multiclass classification problems. The proposed algorithm is tested on publicly
available data sets. The experimental results demonstrate that our proposed algorithm is competitive
with the state-of-the-art semi-supervised learning algorithms in term of accuracy. Additionally, HSS-ELM
requires remarkably less training time compared to semi-supervised SVMs/regularized least-squares
methods.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The extreme learning machine (ELM) is a relatively new
training algorithm for a single-hidden layer feedforward network
(SLFN) that enables fast training of the network [1]. Many existing
SLFN algorithms such as the back-propagation algorithm [2] and
the Levenberg–Marquardt algorithm [3], utilize gradient descent
optimization to adjust the weights and biases of the neurons at
both the hidden and output layers of the network.

Support vector machine (SVM) is considered one of the most
successful algorithms for training SLFNs, which is a maximal
margin classifier established under the framework of structural
risk minimization [4,5]. The formulation used in SVM can be
solved conveniently since the dual problem of SVM is a quadratic
programming. SVMs have been applied extensively in many
applications mainly due to simplicity and stable generalization
performances [6,7,8,9].

Recently, Huang et al. [1,10,11] proposed a new algorithm
termed as extreme learning machine (ELM) to train SLFNs. Unlike
the conventional approaches, ELM only needs to analytically

calculate the output weights while the input weights and hidden
layer biases are randomly generated. Despite this simplicity,
however, ELM not only reaches the smallest training error, but also
the smallest norm of output weights that leads to a good gen-
eralization performance [12]. Recent research studies show that
ELM has comparable or even better performances in prediction
accuracy compared to SVM [10,11,13]. In recent years, many
extension of basic ELMs have been tailored for solving specific
problems, e.g. online sequential data [14,15,16], imbalanced data
[17,18] and noisy/missing data [19,20,21].

Most of the existing works in ELM mainly focus on supervised
learning that requires large number of labeled patterns for clas-
sification and regression tasks. In practice, it is cumbersome to
collect a large amount of labeled data as it is both expensive and
time consuming. While, obtaining unlabeled data is both easier
and more cost effective. To circumvent the problem faced in
supervised learning, semi-supervised learning (SSL) algorithms
have been introduced. SSL algorithms take advantage of both
labeled and unlabeled data in order to improve the prediction
accuracy while saving the labor cost for annotating large amount
of label data [22,23].

Manifold regularization based approaches have been widely
applied in semi-supervised learning algorithms. Manifold reg-
ularization enhances the performances of semi-supervised learn-
ing by trying to explore the geometry of intrinsic data probability
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of distribution. One of the most popular manifold regularization is
the Laplacian regularization [24,25], in which it utilizes graph
Laplacian to determine the geometry of the underlying manifold.
Laplacian regularization has been implemented in various fields
such as in sparse coding [26,27], classification [25,28] and feature
selection [29,30]. Recently, Laplacian regularization has been also
applied in ELM for semi-supervised learning tasks [31,32,33,34,35].

Although, semi-supervised learning methods based on Lapla-
cian regularization produce good performance, they suffer from
few drawbacks. Its performance worsens when there are only few
labeled data available as it lacks extrapolating power. Furthermore,
it has been reported that Laplacian regularization biases the
solution towards a constant function due to its constant null space
and cannot preserve well the local topology [36].

In contrast, Hessian regularization has a richer null space and
can favor the learned functions whose values vary linearly along
the data manifold. Furthermore, it can exploit the intrinsic local
geometry of the data manifold well and has a better extrapolating
power [36,37,38,39]. Thus, Hessian regularization is more suited
for semi-supervised learning compared to Laplacian regulariza-
tion. Hessian regularization has been extensively implemented in
many semi-supervised applications such as in kernel regression
[36], classification [40,41,42], sparse coding [43,44] and feature
selection [45].

In this paper, we extend the ELM to handle semi-supervised
learning problems by introducing Hessian regularization into ELM.
Unlike the Laplacian regularization which was used in the previous
semi-supervised ELM algorithms, Hessian regularization favors
functions whose values vary linearly with respect to geodesic
distance and preserves the local manifold well. Therefore, Hessian
regularization enhances the performance of ELM in semi-
supervised learning. Furthermore, the proposed algorithm inher-
its the computational efficiency and learning capability of tradi-
tional ELM, especially for multiclass classification problems. We
conducted several experiments using the standard data sets to
evaluate our algorithm against state-of-the-art semi-supervised
algorithms. The results show that the proposed algorithm is
competitive with other semi-supervised algorithms in terms of
accuracy and requires much less training time compared to semi-
supervised SVMs/regularized least-square based methods for
multiclass classification problems.

This paper is organized as follows: Section 2 contains the
description of ELM, manifold regularization and semi-supervised
ELM (SS-ELM). In Section 3, we present our proposed framework
which consists of Hessian regularization and HSS-ELM formula-
tion. Experimental results are presented in Section 4. Section 5
concludes the study.

2. Related work

In this section, we present a brief description of ELM, manifold
regularization and semi-supervised extreme learning (SS-ELM),
which are the underlying basis of our work.

2.1. ELM

We briefly describe the ELM algorithm as proposed in Huang
et al. [1,10]. In a supervised learning, a training set with N samples
is denoted by fX;Tg ¼ fxi; tigNi ¼ 1, where xiARD. The corresponding
class labels are given by ti ¼ ½ti1; ti2;…; tiK � , where K represents the
number of classes. We set tik ¼ 1 if xi belongs class k and tik ¼ 0,
otherwise. We utilize training samples fX;Tg in order to train the
ELM. This SLFN consists of nD input neurons, nH hidden neurons
and nK output neurons.

Training of ELM is divided into two stages. In the first stage, the
hidden layer is constructed by using a fixed number of randomly
generated mapping neurons by using activation functions such as
Sigmoid function (1) and Gaussian function (2):

gðx;θÞ ¼ 1
1þexpð�ðaTxþbÞÞ ð1Þ

gðx;θÞ ¼ expð�bJx�aJ Þ ð2Þ
where θ¼ fa; bg are the parameters of the mapping function and
J � J represents the Euclidean norm.

These parameters are randomly generated using any con-
tinuous probability distribution, for example a uniform distribu-
tion of (�1,1). Since these parameters are randomly generated, the
output weights between the hidden and output neurons can be
analytically calculated. Therefore, ELM is considerably more effi-
cient than learning with back-propagation and training SVMs.

These hidden neurons map the input data into nH dimension of
random feature space, thus the network output is expressed as:

f ðxiÞ ¼ϕðxiÞβ; i¼ 1;2;…N ð3Þ
where ϕðxiÞAR1�nH , output of hidden layer corresponding to
training vector xi and βARnH�nK , the output weights between the
hidden layer with the output layer.

In the next stage, ELM calculates the output weights by mini-
mizing the norm of the output weights as follows:

min
βARnH�nK

1
2
JβJ2þC

2

XN
i ¼ 1

Jei J2

s:t: ϕðxiÞβ¼ tTi �eTi ; i¼ 1;2;…N ð4Þ
where eiARnK denotes the error vector corresponding to xi and C
is a penalty function coefficient on the training errors.

The unconstrained optimization formulation is obtained by
substituting the constraints into the objective function:

min
βARnH�nK

LELM ¼ 1
2
JβJ2þC

2
JT�ΦβJ2 ð5Þ

where Φ¼ ½ϕðx1ÞT ;ϕðx2ÞT ;…;ϕðxNÞT �T ARN�nH .
We set the gradient of LELM with respect β to zero to obtain the

following formulation:

∇LELM ¼ βþCΦT ðT�ΦβÞ ¼ 0 ð6Þ
If the number of training samples is larger than the number of

hidden neurons, Eq. (6) will be overdetermined. In a such case, Φ
has more rows than columns and full column rank. Therefore, we
have a close-form solution for (5):

βn ¼ ΦTΦþInH
C

� �
ΦTT ð7Þ

where InH is an nH-by-nH identity matrix.
On the other hand, Φ will have more columns than rows if the

number of hidden neurons is larger than the number of training
samples, which might lead to an under-determined least-squares
problem. In such a case, the output weight βmight have an infinite
number of solutions.

In order to address this problem, β will be restricted to be a
linear combination of the rows of Φ: β¼ΦTα, where αARN�nK

[33]. ΦΦT is invertible when Φ has more columns than rows and
full row rank. We multiply both side of ðΦΦT Þ�1 Φ to get:

αþCðT�ΦΦTαÞ ¼ 0 ð8Þ
This leads to:

βn ¼ΦTαn ¼ΦT ΦΦT þIN
C

� ��1

T ð9Þ

where IN is an N-by-N identity matrix.
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