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a b s t r a c t

The main objective of this study is to precisely predict muscle forces from surface electromyography
(sEMG) for hand gesture recognition. A robust variant of genetic programming, namely Gene Expression
Programming (GEP), is utilized to derive a new empirical model of handgrip sEMG–force relationship. A
series of handgrip forces and corresponding sEMG signals were recorded from 6 healthy male subjects
and during 4 levels of percentage of maximum voluntary contraction (%MVC) in experiments. Using one-
way ANOVA with multiple comparisons test, 10 features of the sEMG time domain were extracted from
homogeneous subsets and used as input vectors. Subsequently, a handgrip force prediction model was
developed based on GEP. In order to compare the performance of this model, other models based on a
back propagation neural network and a support vector machine were trained using the same input
vectors and data sets. The root mean square error and the correlation coefficient between the actual and
predicted forces were calculated to assess the performance of the three models . The results show that
the GEP model provide the highest accuracy and generalization capability among the studied models. It
was concluded that the proposed GEP model is relatively short, simple and excellent for predicting
handgrip forces based on sEMG signals.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Hand gesture recognition refers to the process of under-
standing and classifying meaningful movements by a human's
hands [1]. As an interaction technique, it can potentially deliver
more natural, creative and intuitive methods for human–machine
interaction (HMI) and human–computer interaction (HCI) [2]. In
recent years, hand gesture recognition and analysis have become
important areas of natural HCI for various applications which
range from sign language recognition through medical rehabili-
tation and prosthesis to virtual reality. Although much progress
has been made, identifying force variation in hand gestures
remains a difficult task.

Several methods have been proposed for the automatic recog-
nition of hand gestures. The most common methods are based on
computer vision [2]. Vision-based methods classify hand gestures
into two types: static and dynamic gestures [3]. The two major
categories of vision-based gesture representation are three-
dimensional (3D) model-based [4] and appearance-based

methods [5]. 3D-textured volumetric, 3D geometric model, and 3D
skeleton model are main techniques for the model-based gesture
representation, whereas appearance-based gesture representation
includes color-based model [6], silhouette geometry model,
deformable gabarit model, and motion-based model [7]. However,
computer-vision based methods have several drawbacks: vision
based devices, though user friendly, suffer from configuration
complexity and occlusion problems [2]; the recognition perfor-
mance depends on the quality of the images or videos and is
vulnerable to factors such as camera angle, background and
lighting, which make it difficult to detect subtle finger or hand
movements [8], and especially force variation.

In recent years, surface electromyography (sEMG), which
reflects to some extent the underlying neuromuscular activity [9],
has so far been widely used in novel human computer interfaces
[10,11] for recognition of hand gestures [12,13], speech [14], sign
languages [15,16], movements of upper and lower limbs [17,18],
body language [19,20] and emotional expressions [21,22]. Utilizing
multi-channel EMG signals, sEMG-based gesture recognition
techniques are capable of containing rich information about hand
gestures of various sizes and identifying subtle finger and hand
movements ignored by vision-based techniques [23]. For instance,
Wheeler and Jorgensen [24] recognized the hand movement
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corresponding to the use of a virtual joystick and virtual numeric
keypad by sEMG signals collected from four and eight channels on
the forearm. Chen et al. [12] performed experiments with two-
channel sEMG sensors measuring the activities of forearm muscles
in 24 different hand gestures consisting of various motions of wrist
and fingers. Naik et al. [25] proposed a method for subtle hand
gesture identification from sEMG of the forearm by decomposing
the signal into components originating from different muscles.
Compared to the computer-vision based method, the sEMG-based
method has several other advantages: it allows the non-invasive
recording of muscle activity, senses muscle action directly, is
sensitive to minute muscle movements, is largely uninfluenced by
hand movements, and provides non-visual information about
hand gestures [19,26].

The use of the sEMG has drawn great attention as a control
source for intelligent exoskeletons and prostheses during the past
six decades [27–38]. Advanced control techniques such as Pattern
Recognition (PR) techniques [35,39,40] and regression techniques
[39,41] were also proposed and investigated. However, several
practical limitations, such as different arm positions or arm pos-
tures [42–45], electrode shift [46,47], signal non-stationarity [48],
and force variation [35] may still affect the clinical applicability of
sEMG-based exoskeletons and prostheses.

Currently, significant research has been devoted to the problem
of force variations, as these variations can have a substantial
impact on the robustness of the control of the prostheses. In 2011,
Scheme and Englehart [35] mentioned that the intensity of
movement performed at different force levels may be very dif-
ferent from one another, therefore, it presents a challenge to a PR
system. In 2013, Al-Timemy et al. [49] also indicated that changes
of the force level may degrade the accuracy of the myoelectric
control system by up to 60%. In 2015, Tang et al. [50] demonstrated
that the force variation can have a substantial impact on the per-
formance of elbow angle estimation, and proposed three methods
to reduce the effect of force variation. In the same year, Al-Timemy
et al. [51] investigated the problem of achieving robust control of
hand prostheses by the EMG of transradial amputees in the pre-
sence of six classes of movement, each with three force levels, in
the PR system. However, increasing the number of patterns in PR
systems could improve the approximation, but it usually leads to
more complex classifiers, more complicated and longer training
processes, and deterioration of classification accuracy [52].

Regression techniques [53] can be applied to achieve an inde-
pendent proportional and simultaneous control (generated force
outputs), which is one of the most significant challenges for a
multifunction prosthesis in a more natural and intuitive manner
[54]. Jiang et al. [52] applied a semi-supervised algorithm (DOF-
wise NMF algorithm), where only information about three active
degrees of freedom and desired direction are needed to learn the
relationship between muscle forces and EMG features. Nielsen
et al. [54] estimated the forces from EMG signals using Artificial
Neural Networks (ANN) trained with force labels from the contra-
lateral hand. In their studies, the wrist was selected as the joint of
interest. However, in a handgrip (power grip) the wrist is stabi-
lized and all fingers are engaged [55]. For a cylindrical grasp, a
device with one degree of freedom (DOF) only would be theore-
tically sufficient [56]. In our study, the movement of hand grip was
selected, as there is a great demand for handgrip force estimation
in commercial myocontrol systems, as well as in HMI, HCI and
ergonomics in general.

Duque et al. [57] described that handgrip forces can be indir-
ectly assessed using sEMG of forearm muscles. It is clear that a
more sophisticated means of discriminating different handgrip
forces is needed. As mentioned in [58], two things are needed for
this to be possible: feature extraction and prediction model con-
struction. Nielsen et al. [54] suggested that any algorithm that

enables learning the association between features of the sEMG and
the produced forces should be adopted. Tang et al. [50] also pro-
posed that the forces vary in a large range in practical use, thus
expansion of the training pool and application of autonomic
learning algorithms are two possible solutions. There have been
several scientific efforts aiming to apply machine learning algo-
rithms to investigate the handgrip sEMG–force relationship. For
example, Marco et al. [59] presented the linear regression EMG-
handgrip force model to predict handgrip forces for the ergonomic
evaluation of the use of hand tools. Loconsole et al. [56] developed
an EMG-driven robotic hand exoskeleton for bilateral training of
grasp motion in stroke, and used a multi-layer perceptron neural
network to estimate the grasping force from the extracted EMG
features. Yunus Ziya Arslan et al. [60] used a handlebar for
experiments on isometric contraction and anisometric contraction
to evaluate the relationship between grasping forces and sEMG
signals, and ANN with back propagation were trained by using the
higher order frequency moments of the signals. Ernest Nlandu
et al. [61] investigated the use of features extracted from intra-
muscular electromyography (EMG) and an ANN for estimating
grasping force in the ipsilateral and contralateral (mirrored) hand,
during bilateral grasping tasks.

It is expected that advanced algorithms would satisfy the fol-
lowing requirements [39,53]: little user training, high computa-
tional efficiency and also performing well with few electrodes.
Those aspects are addressed in the present study by applying a
robust variant of genetic programming, namely Gene Expression
Programming (GEP), to produce simple explicit formulations with
high accuracy and reduce the number of EMG features. Never-
theless, GEP-based handgrip force prediction from sEMG signals,
to our best knowledge, has not been explored to date.

This paper is a continuation of our previous work, which developed
an upper-limb power-assist exoskeleton that could be controlled by the
user's motion intention in real time and augment arm performance
based on EMG-angle model [17]. More specifically, our distinctive
contributions are: (1) a new experiment protocol will be established to
test 4 levels of percentage of maximum voluntary contraction (% MVC)
and collect corresponding sEMG signals from forearm muscles; (2)
one-way ANOVA with Tukey post hoc multiple comparisons test will
be employed to extract amplitudes of sEMG signals as feature vectors
from separate homogeneous subsets; (3) the EMG–force relationship
will be investigated based on the accurate prediction model derived by
GEP. In addition, the performance of this model will be compared to
those of other models based on Back-Propagation Neural Network
(BPNN) and Support Vector Machine (SVM).

2. Materials and methods

2.1. Participants

Six healthy male graduate students (mean7SD, age¼26.6770.82
years, height¼175.6772.94 cm, weight¼67.8372.86 kg, and fore-
arm length¼4371.26 cm) with no history of upper limb muscu-
loskeletal and nervous diseases volunteered for this study. All parti-
cipants were right handed. Before the experiment, they promised not
to do any forearm or hand strenuous exercise.

2.2. Experimental protocol

The experiments included simultaneous measurements of
handgrip forces and sEMG signals for 100%, 70%, 40% and 10%
MVC. Participants had to exert handgrip forces with their right
hand in a standardized position, i.e. sitting straight up with the
forearm in a vertical posture and in neutral supination and the
wrist in a neutral position as shown in Fig. 1.
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