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a b s t r a c t 

The collective spatial keyword query (CoSKQ), which takes a location and a set of key- 

words as arguments, finds a group of objects that collectively satisfy the query and achieve 

the smallest cost. However, few studies concern the keyword level (e.g., the level of ho- 

tels), which is of critical importance for decision support. Motivated by this, we study 

a novel query paradigm, namely Level-aware Collective Spatial Keyword (LCSK) query. The 

LCSK query asks for a group of objects that cover the query keywords collectively with a 

threshold constraint and minimize the cost function, which takes into account both the 

cost of objects and the spatial distance. In our settings, each keyword that appears in the 

textual description of objects is associated with a level for capturing the feature of key- 

word. 

We prove the LCSK query is NP-hard, and devise exact algorithm as well as approximate 

algorithm with provable approximation bound to this problem. The proposed exact algo- 

rithm, namely MergeList, explores the candidate space progressively with several prun- 

ing strategies, which is based on the keyword hash table index structure. Unfortunately, 

this approach is not scalable to large datasets. We thus develop an approximate algorithm 

called MaxMargin. It finds the answer by traversing the proposed LIR-tree in the best-first 

fashion. Moreover, two optimizing strategies are used to improve the query performance. 

The experiments on real and synthetic datasets verify that the proposed approximate al- 

gorithm runs much faster than the competitor with desired accuracy. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Spatial database has been studied for decades as it supports many applications from people’s daily life to scientific re- 

search [2,3,10,23,26,34,42,47] . Recently, the keyword search has been combined with spatial queries to enhance location- 

based services such as Baidu Lvyou and Google Earth. Previous works on spatial keyword queries can be roughly classified 

into two categories based on the answer granularity: (1) some proposals find individual objects. Typically, given a location 

and a set of keywords as arguments, this type of query [14,15,17,39] retrieves individual objects that each can cover all 

query keywords, and (2) others ask for a group of objects. In a wide spectrum of applications, whereas multiple objects are 

required to satisfy the user’s needs (expressed by keywords) collectively. Toward this goal, m CK [51,52] , CoSKQ [7,35] , BKC 
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Fig. 1. Example of the LCSK query. 

[18] and SGK [6] are investigated. To the best of our knowledge, few studies consider the keyword level . In real applications, 

we can use the keyword level to capture the level of tourist attractions, hotels or the rescue ability of equipments, which is 

increasingly important for users to make decisions. 

In this work, we study a novel query paradigm called Level-aware Collective Spatial Keyword (LCSK) query. We enhance 

the collective spatial keyword queries (CoSKQ) from the following two aspects. First, we introduce the level vector for the 

objects in the database O . Each object o ∈ O is associated with an integer level vector, denoted by o . ν . The i th element of a 

level vector, i.e., o . ν i , represents the level of i th keyword in o . ω , i.e., o . ω 

i . We denote by o . ω the associated keywords with o . 

Second, we introduce a normalized weight vector into the query definition for capturing the user-specified weights assigned 

to different levels. Similar to [12] , we define our cost function, namely cost distance , as a combination of the spatial distance 

and the cost of objects (will be explained later). The LCSK query has numerous real applications such as resource scheduling 

and emergency rescue. Next, we present an example of the emergency rescue task. 

Example 1. As illustrated in Fig. 1 , we assume that the query point q is an earthquake point. There are four rescue teams 

o 1 , o 2 , o 3 and o 4 having necessary rescue equipments, namely t 1 , t 2 , . . . , t 5 . The level vector captures the level of equipments 

that are associated with teams, which can be used to measure the rescue ability. Usually, the higher the level, the higher 

the rescue ability. The cost denotes the overhead of performing the rescue by the corresponding team, and distance denotes 

the Euclidean distance between q and the rescue team. In such a scenario, we aim to find multiple teams that can together 

achieve the required rescue ability and have the smallest cost. 

To address the above problem, we issue a query q = (�, ω, W, θ ) , where � denotes the location of q and ω = { t 1 , t 2 } 
captures the required rescue equipments. The normalized weight vector W = (0 . 1 , 0 . 15 , 0 . 2 , 0 . 25 , 0 . 3) indicates the rescue 

ability of equipments with different levels. As an example, the level of t 1 w.r.t. o 1 is 4, and thus the corresponding rescue 

ability is W [4] = 0 . 25 . Then, θ = 0 . 5 denotes the desired rescue ability for each required equipment. That is, a group of teams 

whose rescue abilities are not less than 0.5 for each required equipment are called for. In this case, we deliver the group 

{ o 1 , o 2 } as the answer, because it offers the desired rescue ability for each required equipment and has the smallest cost 

distance. Specifically, the rescue ability of t 1 and t 2 contributed by { o 1 , o 2 } are W [4] + W [5] = 0 . 55 and W [5] + W [4] = 0 . 55 , 

which are larger than the given threshold 0.5. Moreover, the cost distance of { o 1 , o 2 } is 0 . 1 ∗ 10 + 0 . 1 ∗ 8 = 1 . 8 . 

More formally, given a spatial database O , and an LCSK query q = (�, ω, W, θ ) , where � is the query location and ω is 

the set of query keywords. W is a normalized weight vector and θ is a threshold. The LCSK query is to retrieve a group G 

of objects such that satisfy the following two conditions: 

• ∀ t ∈ q . ω, the coverage weight of t by G is not less than q . θ ; 

• G has the smallest cost distance among those groups that meet the above condition. 

We prove the LCSK query is NP-hard by the reduction from the weighted set cover (WSC) problem. We devise both the 

exact algorithm and approximate algorithm to this problem. The proposed exact algorithm, namely MergeList, performs the 

query by searching the candidate space progressively, which is based on the keyword hash table index structure. Specifically, 

the candidate space contains all promising answers, and we use several strategies to prune the candidate space. Though 

equipped with several pruning strategies, MergeList is not scalable to large datasets due to the complexity of our problem. 

We thus develop an approximate algorithm called MaxMargin with provable approximation bound. MaxMargin finds the 

answer by traversing the LIR-tree in the best-first fashion. In particular, the LIR-tree augments each inverted file of IR-tree 

with additional information, i.e., the level of keywords and the cost of objects. Two effective optimizing strategies, namely 

the branch and bound strategy (BBS) and the triggered update strategy (TUS) are proposed to further improve the performance 

of MaxMargin. 

To summarize, we make the following contributions: 

• We formally define the LCSK query, which is to find a group of objects such that collectively cover the query keywords 

with a threshold constraint and have the smallest cost distance. We then theoretically prove this problem is NP-hard. 

• We develop an exact algorithm called MergeList on the top of keyword hash table index structure. Furthermore, we 

propose the LIR-tree, which is extended from IR-tree. Based on the LIR-tree, we devise an approximate algorithm called 

MaxMargin that finds the answer using the best-first strategy. To further facilitate the query processing, two optimizing 

strategies, namely BBS and TUS, are adopted by MaxMargin. 

• We conduct comprehensive experiments on real and synthetic datasets to verify the performance of our proposed algo- 

rithms. 
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