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a b s t r a c t

This paper deals with the problem of H1 filter design for a class of nonlinear networked systems based
on T–S fuzzy model with multiple stochastic time-varying delays, and sensor faults and packet dropouts
are considered simultaneously. A sequence of stochastic and independent variables, which obey the
Bernoulli distribution, are introduced to depict stochastic time-varying delays. The possible of sensor
failure can be described by unrelated random variables taking values on an interval, and the packet
dropouts are described as a set of Bernoulli distributed white noises. The approach of piecewise quadratic
Lyapunov function is applied to reduce the conservatism. The filter parameters are obtained by solving a
set of linear matrix inequalities. Finally, a simulation example is provided to illustrate the effectiveness of
the proposed filter design approach.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is generally known that the issue of state/signal estimation
has been discussed in the areas of control and signal processing.
One of the most famous methods is Kalman filtering, which was
put forward in [1]. However, it is very difficult to know the
knowledge of noises as a prior, which is required in Kalman fil-
tering in some practical systems. In order to solve this problem,
H1 filtering approach was introduced. One of the advantages of
using H1 filter over Kalman filter is that no distribution char-
acteristic on the noise is needed. Besides, H1 filtering provides
stronger robustness over Kalman filtering. Owing to those
advantages, much attention has been paid to the H1 filtering, and
various results on this topic have been reported in literature (see,
e.g., [2–9,24,30,34] and references there in).

During the past few years, fuzzy systems based on Takagi–Sugeno
(T–S) model have been well investigated in [2,3,6,8–10,12,14–20,26–
30,33]. The T–S fuzzy model is made up of a set of local linear models
which are smoothly connected by nonlinear fuzzy membership
functions. It has been proved that the approach is an efficient one to
approximate complex nonlinear systems with arbitrary precision

[10]. Recently, some results on the design of filters for T–S fuzzy
systems with the approaches based on common quadratic Lyapunov
functions have been reported, see, e.g., [11,13]. However, it has been
known that the methods tend to be conservative, and even more, a
common quadratic Lyapunov function might not exist especially for
highly nonlinear complex systems. In [15], a convex piecewise affine
controller design method is proposed based on a new dilated LMI
characterization, where the system matrix is separated from Lyapu-
nov matrix such that the controller parametrization is independent
of the Lyapunov matrix. In [16], delay-dependent H1 controller has
been designed for T–S fuzzy systems based on a switching fuzzy
model, and H1 performance is guaranteed by adopting an approach
of piecewise Lyapunov function. To reduce the conservatism, stability
analysis of fuzzy systems based on the piecewise quadratic Lyapunov
functions has been considered in [6,15]. Similar work can be found in
[17,19], and references therein.

It is well known that one of the most important issues that lead
to the systems performance deterioration is time-delay. So far, the
stability and filter design problems for networked systems or T–S
fuzzy systems with network-induced delays have been investigated
by many researchers [11,13,19–24,26,27,31–34,36]. In [19], H1
controller for discrete-time T–S fuzzy systems with time-varying
state delays has been investigated. A fuzzy controller has been
designed for nonlinear impulsive fuzzy systems with time-delay in
[20]. Since network delays are usually time-varying and stochastic,
recently, the delays have been modeled in various probabilistic
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ways [21–23]. On the other hand, packet dropouts have attracted
much attention because it may result in the bad performance, and
even instability of the system [23–25]. Robust H1 filtering for a
class of nonlinear networked systems with randomly occurring
distributed delays, missing measurements and sensor saturation
has been discussed in [23], where the occurrence probability of the
packet dropout phenomenon obeys an individual and certain
probabilistic distribution taking values on 0 and 1. In [24], Dong
et al. consider robust H1 fuzzy output feedback control with mul-
tiple probabilistic delays and multiple packet dropouts, where the
packet dropout phenomenon occurs randomly.

Besides, sensor faults always occur in the practical control sys-
tems, which may affect the performance of systems. Therefore,
there is a practical interest to consider the sensor faults. Up to now,
a great deal of literatures have been reported on the sensor faults
[34–39]. In [37], the control problem of a class of T–S fuzzy systems
with stochastic sensor faults has been studied. The fault statistics of
each sensor is individually quantified and stochastic sensor faults
and non-ideal network quality of services are coupled in a unified
framework. To the best of the authors' knowledge, the problem of
networked H1 filtering for T–S fuzzy systems with stochastic sen-
sor faults, packet dropouts and multiple stochastic time-varying
delays being considered simultaneously has not been fully investi-
gated, which motivates us to study on this problem. The main
contributions of this paper can be concluded as follows: (i) net-
worked H1 filtering with multiple stochastic time-varying com-
munication delays, stochastic sensor faults and packet dropout
phenomena are simultaneously considered in the T–S fuzzy systems
framework; (ii) an approach of piecewise quadratic Lyapunov
functional is adopted to reduce the conservatism of the results.

By concluding the above discussion, in this paper, our aim is to
provide the T–S fuzzy-model-based piecewise H1 filter design for
networked control systems, which include multiple stochastic
time-varying communication delays, sensor faults and successive
data missing phenomenon. Both the sensor faults and packet
dropouts in the measurement equation are considered. Moreover,
packet dropouts are described by a Bernoulli random process.

The rest of the paper is organized as follows. System descriptions
and problem formulations are presented in Section 2. In Section 3,
fuzzy filter is designed with piecewise quadratic Lyapunov function.
A simulation is conducted to demonstrate that the performance of
the system can be guaranteed with the proposed approaches in
Section 4 and the conclusion is provided in Section 5.

Notations: The notations throughout the paper are fairly stan-
dard. The superscript “T” stands for matrix transpose; Rn denotes
the n-dimensional Euclidean space; Rm�n is the set of all realm� n
matrices; and In represents n� n identity matrix; and 0m�n

represents m� n zero matrix, respectively. P40 means that P is a
real symmetric and positive definite. We use an asterisk ðnÞ to
represent a term that is induced by symmetry in symmetric
matrices, and diagf⋯g stands for a block-diagonal matrix, respec-
tively. Efxg and Efxjyg stand for the expectation of x and the
expectation of x conditional on y, and λmaxðAÞ and λminðAÞ denote
the largest and the smallest eigenvalue of the square matrix A,
respectively. L2½0;1Þ denotes the space of square-integrable vec-
tor functions over ½0;1Þ.

2. System descriptions and problem formulations

In this section, we use a T–S fuzzy model to represent the
nonlinear physical plant. The measured information received from
the plant is transmitted via the shared communication channel,
where the sensor faults and the randomly occurring data missing

phenomena happen. In what follows, physical plant will be
modeled.

2.1. T–S fuzzy model of nonlinear physical plant

Consider a discrete T–S fuzzy model with r fuzzy rules, and the i-th
fuzzy rule is as follows Ri : IF ξ1ðkÞ is Wi1; and…; ξgðkÞ is Wig THEN

xðkþ1Þ ¼ AixðkÞþAdi

Xq
m ¼ 1

αmðkÞxðk�τmðkÞÞþBiwðkÞ

yðkÞ ¼ CixðkÞ
zðkÞ ¼ LixðkÞ

8>>>><
>>>>:

ð1Þ

where Ri ðiAR91;2;…; rÞ denotes the i-th fuzzy inference rule, r is
the number of fuzzy implications. ξðkÞ ¼ ðξ1ðkÞ; ξ2ðkÞ;…; ξgðkÞÞARg is
the premise variable vector and assumed to be measurable. Wij ðj¼
1;2;…; gÞ are the fuzzy set, xðkÞARn is the state vector, yðkÞARm is
the system measurement output, and zðkÞARp is the signal to be
estimated, wðkÞARq is the external disturbance input vector belong-
ing to L2½0;1Þ, and τmðkÞ ðm¼ 1;2;…; qÞ are randomly time-varying
communication delays. (Ai, Adi, Bi, Ci, Li) stands for the ith local model
of the fuzzy system.

The stochastic variables αmðkÞ ðm¼ 1;2;…; qÞ in (1) are Ber-
noulli distributed white noise sequences and satisfy

ProbfαmðkÞ ¼ 1g ¼ αm and ProbfαmðkÞ ¼ 0g ¼ 1�αm

Assumption 1. The communication delays τmðkÞ ðm¼ 1;2;…; qÞ
are time-varying and satisfy τ1rτmðkÞrτ2, where τ1 and τ2 are
constant positive scalars representing the lower and upper bounds
on the communication delays, respectively.

By using a singleton fuzzifier, product fuzzy inference, and
center-average defuzzifier, the T–S fuzzy system (1) can be
described as follows:

xðkþ1Þ ¼
Xr

i ¼ 1

hiðξðkÞÞ AixðkÞþAdi

Xq
m ¼ 1

αmðkÞxðk�τmðkÞÞþBiwðkÞ
" #

yðkÞ ¼
Xr

i ¼ 1

hiðξðkÞÞCixðkÞ

zðkÞ ¼
Xr

i ¼ 1

hiðξðkÞÞLixðkÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ
where

hiðξðkÞÞ ¼
∏g

j ¼ 1WijðξðkÞÞPr
i ¼ 1 ∏

g
j ¼ 1WðξðkÞÞ ð3Þ

Therefore, for all k, hiðξðkÞÞ satisfies

hiðξðkÞÞZ0;
Xr

i ¼ 1

hiðξðkÞÞ ¼ 1 ð4Þ

In what follows, for simple to write, we rewrite Eq. (2) as

xðkþ1Þ ¼ AðhÞxðkÞþAdðhÞ
Xq
m ¼ 1

αmðkÞxðk�τmðkÞÞþBðhÞwðkÞ

yðkÞ ¼ CðhÞxðkÞ
zðkÞ ¼ LðhÞxðkÞ

8>>>><
>>>>:

ð5Þ

where

AðhÞ AdðhÞ BðhÞ
CðhÞ 0 0
LðhÞ 0 0

2
64

3
75¼

Xr

i ¼ 1

hi

Ai Adi Bi

Ci 0 0
Li 0 0

2
64

3
75
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